Skip to main content
Log in

Symbolic linearization of equations of motion of constrained multibody systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Many common dynamic mechanical systems are subject to configuration or velocity constraints. Analysis of such systems often requires linearized forms of the motion equations. To address this issue, we developed a procedure for organizing the constraint and motion equations and their subsequent linearization. This procedure was developed for equations of motion generated by Kane’s method, where dependent states have not been algebraically eliminated; it is compatible with any method as long as only ordinary differential equations are required to describe the system (i.e., no differential algebraic equations). Following a brief review of Kane’s method and the structure of the equations it generates, we present the procedure to symbolically linearize the nonlinear motion equations of constrained multibody systems, and illustrate it with an example of the rolling disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 1: Theory. Meccanica 15(1), 9–20 (1980). doi:10.1007/BF02128236

    Article  MATH  Google Scholar 

  2. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 2: Numerical application. Meccanica 15(1), 21–30 (1980). doi:10.1007/BF02128237

    Article  Google Scholar 

  3. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  4. Kang, J.S., Bae, S., Lee, J.M., Tak, T.O.: Force equilibrium approach for linearization of constrained mechanical system dynamics. J. Mech. Des. 125(1), 143 (2003). doi:10.1115/1.1541631

    Article  Google Scholar 

  5. Kuleshov, A.S.: The steady rolling of a disc on a rough plane. J. Appl. Math. Mech. 65(1), 171–173 (2001). doi:10.1016/S0021-8928(01)00020-X

    Article  MathSciNet  Google Scholar 

  6. Lesser, M.: A geometrical interpretation of Kane’s Equations. Proc. R. Soc. A, Math. Phys. Eng. Sci. 436(1896), 69–87 (1992). doi:10.1098/rspa.1992.0005

    Article  MATH  MathSciNet  Google Scholar 

  7. Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proc. R. Soc. A, Math. Phys. Eng. Sci. 463(2084), 1955–1982 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Minaker, B.P., Rieveley, R.J.: Automatic generation of the non-holonomic equations of motion for vehicle stability analysis. Veh. Syst. Dyn. 48(9), 1043–1063 (2010). doi:10.1080/00423110903248702

    Article  Google Scholar 

  9. Mitiguy, P.C., Kane, T.R.: Motion variables leading to efficient equations of motion. Int. J. Robot. Res. 15(5), 522–532 (1996). doi:10.1177/027836499601500507

    Article  Google Scholar 

  10. Negrut, D., Ortiz, J.L.: A practical approach for the linearization of the constrained multibody dynamics equations. J. Comput. Nonlinear Dyn. 1(3), 230 (2006). doi:10.1115/1.2198876

    Article  Google Scholar 

  11. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. American Mathematical Society, Providence (1972)

    MATH  Google Scholar 

  12. Neuman, C.P., Murray, J.J.: Linearization and sensitivity functions of dynamic robot models. IEEE Trans. Syst. Man Cybern. SMC-14(6), 805–818 (1984). doi:10.1109/TSMC.1984.6313309

    Article  Google Scholar 

  13. Bottema, O.: On the small vibrations of non-holonomic systems. In: Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, 1936, pp. 848–850 (1949)

    Google Scholar 

  14. O’Reilly, O.M.: The dynamics of rolling disks and sliding disks. Nonlinear Dyn. 10(3), 287–305 (1996). doi:10.1007/BF00045108

    Article  MathSciNet  Google Scholar 

  15. Reckdahl, K.J.: Dynamics and control of mechanical systems containing closed kinematic chains. Ph.D. Thesis, Stanford University (1996)

  16. Schwab, A.L., Meijaard, J.P.: Dynamics of flexible multibody systems with non-holonomic constraints: A finite element approach. Multibody Syst. Dyn. 10(1), 107–123 (2003). doi:10.1023/A:1024575707338

    Article  MATH  MathSciNet  Google Scholar 

  17. SymPy Development Team: SymPy: Python library for symbolic mathematics (2012). http://www.sympy.org

  18. Udwadia, F.E., von Bremen, H.F.: An efficient and stable approach for computation of Lyapunov characteristic exponents of continuous dynamical systems. Appl. Math. Comput. 121(2–3), 219–259 (2001). doi:10.1016/S0096-3003(99)00292-1

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This material is based upon work partially supported by the National Science Foundation under award 0928339 and three Google Summer of Code projects (2009, 2011, 2012). Jason Moore, Thomas Johnston, Evan Sperber, and Andrew Kickertz provided valuable feedback during discussions of multibody dynamics and control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale L. Peterson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(ZIP 49 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, D.L., Gede, G. & Hubbard, M. Symbolic linearization of equations of motion of constrained multibody systems. Multibody Syst Dyn 33, 143–161 (2015). https://doi.org/10.1007/s11044-014-9436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9436-5

Keywords

Navigation