Skip to main content
Log in

Non-subsampled shearlet transform-based image fusion using modified weighted saliency and local difference

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Existing image fusion methods can not efficiently capture significant edges, texture and fine details of the source images due to inefficient fusion framework. In addition, for objective evaluation of fusion algorithms, not much attention is given to simultaneously measure both texture and structural information of the source images which are preserved in the fused image. To address these issues, non-subsampled shearlet transform (NSST) is used to decompose pre-registered source images into low- and high-frequency components. These low- and high-frequency coefficients are fused by using our proposed modified weighted salience and local difference fusion rules, respectively. To enrich edge information in the fused image, Canny edge detector with scale multiplication is employed. Moreover, a metric QTS is proposed to jointly measure both texture and structural information present in the fused image. The proposed metric is formulated on the basis of local standard deviation filtering, local information entropy, and local difference filtering. Both subjective and objective results validate the proposed fusion framework and the metric QTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aishwarya N, Bennila Thangammal C (2017) An image fusion framework using novel dictionary based sparse representation. Multimed Tools Appl 76(21):21869–21888

    Article  Google Scholar 

  2. Bao P, Zhang L, Wu X (2005) Canny edge detection enhancement by scale multiplication. IEEE Trans Pattern Anal Mach Intell 27(9):1485–1490

    Article  Google Scholar 

  3. Bavirisetti DP, Dhuli R (2016) Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen-Loeve transform. IEEE Sens J 16(1):203–209

    Article  Google Scholar 

  4. Bhateja V, Patel H, Krishn A, Sahu A, Lay-Ekuakille A (2015) Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sens J 15(12):6783–6790

    Article  Google Scholar 

  5. Bhatnagar G, Wu QJ, Liu Z (2013) Directive contrast based multimodal medical image fusion in nsct domain. IEEE Trans Multimed 15(5):1014–1024

    Article  Google Scholar 

  6. Burt PJ, Kolczynski RJ (1993) Enhanced image capture through fusion. In: Fourth international conference on computer vision, 1993. Proceedings. IEEE, pp 173–182

  7. Candès E, Demanet L, Donoho D, Ying L (2006) Fast discrete curvelet transforms. Multiscale Model Simul 5(3):861–899

    Article  MathSciNet  Google Scholar 

  8. Cao L, Jin L, Tao H, Li G, Zhuang Z, Zhang Y (2015) Multi-focus image fusion based on spatial frequency in discrete cosine transform domain. IEEE Signal Process Lett 22(2):220–224

    Article  Google Scholar 

  9. Cao L, Jin L, Tao H, Li G, Zhuang Z, Zhang Y (2015) Multi-focus image fusion based on spatial frequency in discrete cosine transform domain. IEEE Signal Process Lett 22(2):220–224

    Article  Google Scholar 

  10. Choi M, Kim RY, Kim MG (2004) The curvelet transform for image fusion. Int Soc Photogramm Remote Sens ISPRS 2004 35:59–64

    Google Scholar 

  11. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multi-modality image registration based on information theory. In: Information processing in medical imaging, vol 3, pp 263–274

  12. Do MN, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 14(12):2091–2106

    Article  Google Scholar 

  13. Easley G, Labate D, Lim WQ (2008) Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal 25(1):25–46

    Article  MathSciNet  Google Scholar 

  14. Easley G, Labate D, Lim WQ (2008) Sparse directional image representations using the discrete shearlet transform. Appl Comput Harmon Anal 25(1):25–46

    Article  MathSciNet  Google Scholar 

  15. Feng F, Ran Q, Li W (2017) Multi-level fusion of graph based discriminant analysis for hyperspectral image classification. Multimed Tools Appl 76(21):22959–22977

    Article  Google Scholar 

  16. Geng P, Huang M, Liu S, Feng J, Bao P (2016) Multifocus image fusion method of ripplet transform based on cycle spinning. Multimed Tools Appl 75(17):10583–10593

    Article  Google Scholar 

  17. Huang R (2008) Some inequalities for the hadamard product and the fan product of matrices. Linear Algebra Appl 428(7):1551–1559

    Article  MathSciNet  Google Scholar 

  18. Ji X, Zhang G (2017) Image fusion method of sar and infrared image based on curvelet transform with adaptive weighting. Multimed Tools Appl 76(17):17633–17649

    Article  Google Scholar 

  19. Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45(2):83–105

    Article  Google Scholar 

  20. Kanmani M, Narasimhan V (2017) An optimal weighted averaging fusion strategy for thermal and visible images using dual tree discrete wavelet transform and self tunning particle swarm optimization. Multimed Tools Appl 76(20):20989–21010

    Article  Google Scholar 

  21. Kong W, Liu J (2013) Technique for image fusion based on nonsubsampled shearlet transform and improved pulse-coupled neural network. Opt Eng 52(1):017001–017001

    Article  Google Scholar 

  22. Li H, Manjunath B, Mitra SK (1995) Multisensor image fusion using the wavelet transform. Graph Models Image Process 57(3):235–245

    Article  Google Scholar 

  23. Li S, Kwok JT, Wang Y (2002) Multifocus image fusion using artificial neural networks. Pattern Recogn Lett 23(8):985–997

    Article  Google Scholar 

  24. Li S, Kang X, Hu J (2013) Image fusion with guided filtering. IEEE Trans Image Process 22(7):2864–2875

    Article  Google Scholar 

  25. Lim WQ (2010) The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans Image Process 19(5):1166–1180

    Article  MathSciNet  Google Scholar 

  26. Liu Y, Liu S, Wang Z (2015) A general framework for image fusion based on multi-scale transform and sparse representation. Inf Fusion 24:147–164

    Article  Google Scholar 

  27. Liu Y, Chen X, Peng H, Wang Z (2017) Multi-focus image fusion with a deep convolutional neural network. Inf Fusion 36:191–207

    Article  Google Scholar 

  28. Ma J, Zhao J, Ma Y, Tian J (2015) Non-rigid visible and infrared face registration via regularized gaussian fields criterion. Pattern Recognit 48(3):772–784

    Article  Google Scholar 

  29. Ma J, Chen C, Li C, Huang J (2016) Infrared and visible image fusion via gradient transfer and total variation minimization. Inf Fusion 31:100–109

    Article  Google Scholar 

  30. Ma J, Jiang J, Liu C, Li Y (2017) Feature guided gaussian mixture model with semi-supervised em and local geometric constraint for retinal image registration. Inf Sci 417:128–142

    Article  MathSciNet  Google Scholar 

  31. Ma J, Ma Y, Li C (2019) Infrared and visible image fusion methods and applications: a survey. Inf Fusion 45:153–178

    Article  Google Scholar 

  32. Miao Q-G, Shi C, Xu PF, Yang M, Shi YB (2011) A novel algorithm of image fusion using shearlets. Opt Commun 284(6):1540–1547

    Article  Google Scholar 

  33. Mitashe MR, Habib ARB, Razzaque A, Tanima IA, Uddin J (2017) An adaptive digital image watermarking scheme with pso, dwt and xfcm. In: 2017 IEEE international conference on imaging, vision pattern recognition (icIVPR), pp 1–5

  34. Mitianoudis N, Stathaki T (2008) Optimal contrast correction for ica-based fusion of multimodal images. IEEE Sens J 8(12):2016–2026

    Article  Google Scholar 

  35. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  36. Petrovic VS, Xydeas CS (2004) Gradient-based multiresolution image fusion. IEEE Trans Image Process 13(2):228–237

    Article  Google Scholar 

  37. Prabhakar S, Jain AK (2002) Decision-level fusion in fingerprint verification. Pattern Recognit 35(4):861–874

    Article  Google Scholar 

  38. Summers D (2003) Harvard whole brain atlas: www.med.harvard.edu/aanlib/home.html. J Neurol Neurosurg Psychiatry 74(3):288

    Article  Google Scholar 

  39. Wang R, Bu F, Jin H, Li L (2007) A feature-level image fusion algorithm based on neural networks. In: 2007 1st international conference on bioinformatics and biomedical engineering, pp 821–824

  40. Wenjing T, Fei G, Renren D, Yujuan S, Ping L (2017) Face recognition based on the fusion of wavelet packet sub-images and fisher linear discriminant. Multimed Tools Appl 76(21):22725–22740

    Article  Google Scholar 

  41. Xydeas C, Petrovic V (2000) Objective image fusion performance measure. Electron Lett 36(4):308–309

    Article  Google Scholar 

  42. Yang C, Zhang JQ, Wang XR, Liu X (2008) A novel similarity based quality metric for image fusion. Inf Fusion 9(2):156–160

    Article  Google Scholar 

  43. Yang Y, Que Y, Huang S, Lin P (2016) Multimodal sensor medical image fusion based on type-2 fuzzy logic in nsct domain. IEEE Sensors J 16(10):3735–3745

    Article  Google Scholar 

  44. Yin M, Liu W, Zhao X, Yin Y, Guo Y (2014) A novel image fusion algorithm based on nonsubsampled shearlet transform. Optik - Int J Light Electron Opt 125(10):2274–2282

    Article  Google Scholar 

  45. Zhang X, Li X, Feng Y (2017) Image fusion based on simultaneous empirical wavelet transform. Multimed Tools Appl 76(6):8175–8193

    Article  Google Scholar 

  46. Zhao S, Chen X, Wang S, Li J, Yang W (2003) A new method of remote sensing image decision-level fusion based on support vector machine. In: Proceedings of international conference on recent advances in space technologies, 2003. RAST ’03, pp 91–96

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Bhuyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishwakarma, A., Bhuyan, M.K. & Iwahori, Y. Non-subsampled shearlet transform-based image fusion using modified weighted saliency and local difference. Multimed Tools Appl 77, 32013–32040 (2018). https://doi.org/10.1007/s11042-018-6254-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6254-4

Keywords

Navigation