Skip to main content
Log in

Purifying selection shaping the evolution of the Toll-like receptor 2 TIR domain in brown hares (Lepus europaeus) from Europe and the Middle East

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) are transmembrane proteins of the innate immune system, composed of the ectodomain involved in pathogen recognition and the intracellular Toll/interleukin-1 receptor (TIR) domain important for downstream signal transduction. Here, we analyze the genetic variability of TIR nucleotide and amino-acid sequences of the TLR2 gene in 243 brown hares from Europe and the Middle East and tested for the presence of selection signals and spatial structuring. TLR2 TIR domain sequences were PCR amplified and sequenced, while genotyping was performed by phasing. Genetic diversity indices were calculated in DnaSP and Arlequin, while presence of selection signals was tested using MEGA and the Datamonkey web server. The presence of spatial patterns in TIR sequence distribution was tested by spatial Principal Component Analysis (sPCA) in adegenet. A total of 13 haplotypes were revealed with haplotype diversity of 0.424, and nucleotide diversity (π) of 0.00138. Two spatial clusters were revealed: “Anatolia/Middle East” and “Europe”. In Anatolia the two most prevalent amino-acid variants, A and B (the latter being the most ancestral) were maintained at similar frequencies; but in Europe a shift in genotype frequencies was observed as well as a higher number of nonsynonymous substitutions giving rise to novel amino-acid protein variants originating from the evolutionarily younger protein variant. Molecular diversity (haplotype and nucleotide diversity) indices were significantly higher in the “Anatolia/Middle East” cluster. A signal of purifying selection was detected acting on the TIR sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci 102(27):9577–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373

    Article  CAS  PubMed  Google Scholar 

  3. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675

    Article  CAS  PubMed  Google Scholar 

  4. Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13(5):816

    Article  CAS  PubMed  Google Scholar 

  5. Barbalat R, Lau L, Locksley RM, Barton GM (2009) Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol 10(11):1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gay NJ, Gangloff M (2007) Structure and function of Toll receptors and their ligands. Annu Rev Biochem 76:141–165

    Article  CAS  PubMed  Google Scholar 

  7. Farhat K, Riekenberg S, Heine H, Debarry J, Lang R, Mages J, Buwitt-Beckmann U, Röschmann K, Jung G, Wiesmüller KH, Ulmer AJ (2008) Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol 83(3):692–701

    Article  CAS  PubMed  Google Scholar 

  8. Merx S, Zimmer W, Neumaier M, Ahmad-Nejad P (2006) Characterization and functional investigation of single nucleotide polymorphisms (SNPs) in the human TLR5 gene. Human mutat 27(3):293

    Article  Google Scholar 

  9. Bhide MR, Mucha R, Mikula I, Kisova L, Skrabana R, Novak M (2009) Novel mutations in TLR genes cause hyporesponsiveness to Mycobacterium avium subsp paratuberculosis infection. BMC genet 10(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ben-Ali M, Barbouche MR, Bousnina S, Chabbou A, Dellagi K (2004) Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol 11(3):625–626

    CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Connell D (2007) Host response: genital herpes takes its toll. Nat Rev Microbiol 5(10):746

    Article  CAS  Google Scholar 

  12. Mikami T, Miyashita H, Takatsuka S, Kuroki Y, Matsushima N (2012) Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains. Gene 503(2):235–243

    Article  CAS  PubMed  Google Scholar 

  13. Hughes AL, Packer B, Welch R, Chanock SJ, Yeager M (2005) High level of functional polymorphism indicates a unique role of natural selection at human immune system loci. Immunogenetics 57(11):821–827

    Article  CAS  PubMed  Google Scholar 

  14. Ferrer-Admetlla A, Bosch E, Sikora M, Marquès-Bonet T, Ramírez-Soriano A, Muntasell A, Navarro A, Lazarus R, Calafell F, Bertranpetit J, Casals F (2008) Balancing selection is the main force shaping the evolution of innate immunity genes. J Immunol 181(2):1315–1322

    Article  CAS  PubMed  Google Scholar 

  15. Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP (2009) Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc Natl Acad Sci 106(17):7073–7078

    Article  PubMed  PubMed Central  Google Scholar 

  16. Majumder PP (2010) Pathogen pressure and molecular evolutionary genetics of innate immunity genes in humans. Ongoing Saga of Evolution. Springer, New Delhi, In Nature at Work

    Book  Google Scholar 

  17. Chapman JR, Hellgren O, Helin AS, Kraus RH, Cromie RL, Waldenström J (2016) The evolution of innate immune genes: purifying and balancing selection on β-defensins in waterfowl. Mol Biol Evol 33(12):3075–3087

    Article  CAS  PubMed  Google Scholar 

  18. Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11(1):368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jann OC, Werling D, Chang JS, Haig D, Glass EJ (2008) Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol Biol 8(1):288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tschirren B, Råberg L, Westerdahl H (2011) Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents. J Evol Biol 24(6):1232–1240

    Article  CAS  PubMed  Google Scholar 

  21. Smith SA, Haig D, Emes RD (2014) Novel ovine polymorphisms and adaptive evolution in mammalian TLR2 suggest existence of multiple pathogen binding regions. Gene 540(2):217–225

    Article  CAS  PubMed  Google Scholar 

  22. Xu S, Tian R, Lin Y, Yu Z, Zhang Z, Niu X, Wang X, Yang G (2019) Widespread positive selection on cetacean TLR extracellular domain. Mol Immunol 106:135–142

    Article  CAS  PubMed  Google Scholar 

  23. Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A (2008) Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics 60(12):727–735

    Article  CAS  PubMed  Google Scholar 

  24. Coetzer WG, Turner TR, Schmitt CA, Grobler JP (2018) Adaptive genetic variation at three loci in South African vervet monkeys (Chlorocebus pygerythrus) and the role of selection within primates. PeerJ 6:e4953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B, Kidd JR (2009) Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 5(7):e1000562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Seabury CM, Seabury PM, Decker JE, Schnabel RD, Taylor JF, Womack JE (2010) Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle. Proc Natl Acad Sci 107(1):151–156

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee S, Ganguli D, Majumder PP (2014) Global footprints of purifying selection on toll-like receptor genes primarily associated with response to bacterial infections in humans. Genome Biol Evol 6(3):551–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wibbelt G, Frölich K (2005) Infectious diseases in European brown hare (Lepus europaeus). Wildl Biol Pract 17:86–93

    Google Scholar 

  29. Goüy de Bellocq J, Suchentrunk F, Baird SJ, Schaschl H (2009) Evolutionary history of an MHC gene in two leporid species: characterisation of Mhc-DQA in the European brown hare and comparison with the European rabbit. Immunogenetics 61(2):131

    Article  PubMed  Google Scholar 

  30. Campos JL, Goüy de Bellocq J, Schaschl H, Suchentrunk F (2011) MHC class II DQA gene variation across cohorts of brown hares (Lepus europaeus) from eastern Austria: testing for different selection hypotheses. Mamm Biol-Zeitschrift für Säugetierkunde 76(3):251–257

    Article  Google Scholar 

  31. Smith S, Goüy de Bellocq J, Suchentrunk F, Schaschl H (2011) Evolutionary genetics of MHC class II beta genes in the brown hare Lepus europaeus. Immunogenetics 63(11):743–751  

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koutsogiannouli EA, Moutou KA, Sarafidou T, Stamatis C, Spyrou V, Mamuris Z (2009) Major histocompatibility complex variation at class II DQA locus in the brown hare (Lepus europaeus). Mol Ecol 18(22):4631–4649

    Article  CAS  PubMed  Google Scholar 

  33. Koutsogiannouli EA, Moutou KA, Stamatis C, Walter L, Mamuris Z (2014) Genetic variation in the major histocompatibility complex of the European brown hare (Lepus europaeus) across distinct phylogeographic areas. Immunogenetics 66(6):379––392

    Article  CAS  PubMed  Google Scholar 

  34. Neves F, Águeda-Pinto A, Pinheiro A, Abrantes J, Esteves PJ (2019) Strong selection of the TLR2 coding region among the Lagomorpha suggests an evolutionary history that differs from other mammals. Immunogenetics 71(5–6):437–443

    Article  CAS  PubMed  Google Scholar 

  35. Awadi A, Ben Slimen H, Smith S, Kahlen J, Makni M, Suchentrunk F (2018) Genetic diversity of the toll-like receptor 2 (TLR2) in hare (Lepus capensis) populations from Tunisia. CR Biol 341(6):315–324

    Article  Google Scholar 

  36. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, NY

    Google Scholar 

  37. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Human Genet 68(4):978–989

    Article  CAS  Google Scholar 

  38. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  CAS  PubMed  Google Scholar 

  39. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol ecol resour 8(1):103–106

    Article  PubMed  Google Scholar 

  40. Peakall RO, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  41. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    Article  PubMed  Google Scholar 

  42. Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6(9):1110–1116

    Article  Google Scholar 

  43. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405

    Article  CAS  PubMed  Google Scholar 

  44. RCore TE (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  45. Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101(1):92

    Article  CAS  PubMed  Google Scholar 

  46. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 35(3):773–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12(1):7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408(6808):111

    Article  CAS  PubMed  Google Scholar 

  51. Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31(16):2745–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ve T, Williams SJ, Kobe B (2015) Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Apoptosis 20(2):250–261

    Article  CAS  PubMed  Google Scholar 

  53. Jebanathirajah JA, Peri S, Pandey A (2002) Toll and interleukin-1 receptor (TIR) domain-containing proteins in plants: a genomic perspective. Trends Plant Sci 7(9):388–391

    Article  CAS  PubMed  Google Scholar 

  54. Turner JD (2003) A bioinformatic approach to the identification of bacterial proteins interacting with Toll—interleukin 1 receptor—resistance (TIR) homology domains. FEMS Immunol Med Microbiol 37(1):13–21

    Article  CAS  PubMed  Google Scholar 

  55. Hughes AL, Packer B, Welch R, Bergen AW, Chanock SJ, Yeager M (2003) Widespread purifying selection at polymorphic sites in human protein-coding loci. Proc Natl Acad Sci 100(26):15754–15757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kasapidis P, Suchentrunk F, Magoulas A, Kotoulas G (2005) The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuations and anthropogenic translocations. Mol Phylogenet Evol 34(1):55–66

    Article  CAS  PubMed  Google Scholar 

  57. Stamatis C, Suchentrunk F, Moutou KA, Giacometti M, Haerer G, Djan M, Vapa L, Vukovic M, Tvrtković N, Sert H, Alves PC, Mammuris Z (2009) Phylogeography of the brown hare (Lepus europaeus) in Europe: a legacy of south-eastern Mediterranean refugia? J Biogeogr 36(3):515–528

    Article  Google Scholar 

  58. Djan M, Stefanović M, Veličković N, Lavadinović V, Alves PC, Suchentrunk F (2017) Brown hares (Lepus europaeus Pallas, 1778) from the Balkans: a refined phylogeographic model. Hystrix. Italian J Mammal 28(2):186–193

    Google Scholar 

  59. Stefanović M, Djan M, Veličković N, Beuković D, Lavadinović V, Zhelev CD, Demirbas Y, Paule L, Gedeon CI, Mamuris Z, Posautz A, Beiglbock C, Kubber-Heiss A, Suchentrunk F (2019) Positive selection and precipitation effects on the mitochondrial NADH dehydrogenase subunit 6 gene in brown hares (Lepus europaeus) under a phylogeographic perspective. PLoS ONE 14(11):e0224902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Demirbaş Y, Albayrak İ, Koca AÖ, Stefanović M, Knauer F, Suchentrunk F (2019) Spatial genetics of brown hares (Lepus europaeus Pallas, 1778) from Turkey: different gene pool architecture on either side of the Bosphorus? Mammal Biol 94:77–85

    Article  Google Scholar 

  61. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353

    Article  CAS  PubMed  Google Scholar 

  62. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282(5396):2085–2088

    Article  CAS  PubMed  Google Scholar 

  63. Verstak B, Arnot CJ, Gay NJ (2013) An alanine-to-proline mutation in the BB-loop of TLR3 Toll/IL-1R domain switches signalling adaptor specificity from TRIF to MyD88. J Immunol 191(12):6101–6109

    Article  CAS  PubMed  Google Scholar 

  64. Mahita J, Rv S (2018) Probing subtle conformational changes induced by phosphorylation and point mutations in the TIR domains of TLR 2 and TLR 3. Proteins: Struct, Funct, Bioinform 86(5):524–535

    Article  CAS  Google Scholar 

  65. Tsai CJ, Del Sol A, Nussinov R (2009) Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol BioSyst 5(3):207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qiu Y, Ding Y, Zou L, Tan Z, Liu T, Fu X, Xu W (2013) Divergent roles of amino acid residues inside and outside the BB loop affect human Toll-like receptor (TLR) 2/2, TLR2/1 and TLR2/6 responsiveness. PLoS ONE 8(4):e61508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McKelvey AC, Lear TB, Dunn SR, Evankovich J, Londino JD, Bednash JS, Zhang Y, McVerry BJ, Liu Y, Chen BB (2016) RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity. Elife 5:e18496

    Article  PubMed  PubMed Central  Google Scholar 

  68. Conte GL, Hodgins KA, Yeaman S, Degner JC, Aitken SN, Rieseberg LH, Whitlock MC (2017) Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex. BMC Genomics 18(1):970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nyman T, Stenmark P, Flodin S, Johansson I, Hammarström M, Nordlund P (2008) The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J Biol Chem 283(18):11861–11865

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all local hunters, Prof. Philip U. Alkon, PhD (Israel), Orsolya Vincze, PhD (Romania) and Sim Broekhuizen, PhD (The Netherlands) for helping collecting the samples. Partial financial support for this work was provided by Wildlife Research—Franz Suchentrunk (Project No. 1/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milomir Stefanović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanović, M., Djan, M., Veličković, N. et al. Purifying selection shaping the evolution of the Toll-like receptor 2 TIR domain in brown hares (Lepus europaeus) from Europe and the Middle East. Mol Biol Rep 47, 2975–2984 (2020). https://doi.org/10.1007/s11033-020-05382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05382-x

Keywords

Navigation