Skip to main content
Log in

Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Growth-regulating factor (GRF) is an important protein in GA-mediated response, with key roles in plant growth and development. However, it is not known whether or how the GRF proteins in citrus to regulate organ size. In this study, nine citrus GRF genes (CsGRF1–9) were validated from the ‘Anliu’ sweet orange (AL, Citrus sinensis cv. Anliu) by PCR amplification. They all contain two conserved motifs (QLQ and WRC) and have 3–4 exons. The transcript levels of genes were detected by qRT-PCR. Transcript analysis showed that (1) CsGRF 1, 2, 5, 6, 7, and 9 expressed predominantly in young leaf, CsGRF 3 and 4 expressed predominantly in fruit immature juice sacs and CsGRF 8 expressed predominantly in root; (2) all citrus GRF genes had significantly higher expression in young leaves than mature leaf; (3) in juice sacs, the transcript levels of CsGRF1, 4, 5, 6, and 8 increased significantly while the transcript levels of CsGRF2, 3, 7, and 9 had no significant change from 80 DAF to 100 DAF. Besides, GA3 treatment did not affect the transcript levels of CsGRF5 and CsGRF6 but significantly increased the transcript levels of the other seven CsGRF genes in young leaves. These results suggested that all CsGRF genes involve in the leaf development, CsGRF1, 4, 5, 6, and 8 act developmentally whilst CsGRF2, 3, 7, and 9 play fundamental roles in fruit cell enlargement, which may be through GA pathway or GA-independent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim JH, Tsukaya H (2015) Regulation of plant growth and development by the growth-regulating factor and GRF-interacting factor duo. J Exp Bot 66(20):6093–6107

    Article  CAS  Google Scholar 

  2. Van der Knaap E, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104

    Article  CAS  PubMed  Google Scholar 

  4. Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, Li JS, Wang SC (2008) Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in maize (Zea mays L.). Plant Sci 175(6):809–817

    Article  CAS  Google Scholar 

  5. Filiz E, KOÇ İ, Tombuloğlu H (2014) Genome-wide identification and analysis of growth regulating factor genes in Brachypodium distachyon: in silico approaches. Turk J Biol 38(38):296–306

    Article  CAS  Google Scholar 

  6. Choi D, Kim JH, Kende H (2004) Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol 45:897–904

    Article  CAS  PubMed  Google Scholar 

  7. Wang F, Qiu N, Ding Q, Li J, Zhang Y, Li H, Gao J (2014) Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genom 15(1):1002–1011

    Article  Google Scholar 

  8. Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB, Wang XF, Liu GH, Wang HZ (2012) The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot 63(10):3727–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim JH, Lee BH (2006) Growth-regulating factor4 of Arabidopsis thaliana is required for development of leaves, cotyledons, and shoot apical meristem. J Plant Biol 49(6):463–468

    Article  CAS  Google Scholar 

  10. Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao BH, Lyon MP (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  11. Bangerth F (2000) Abscission and thinning of young fruit and thier regulation by plant hormones and bioregulators. Plant Growth Regu 31(1–2):43–59

    Article  CAS  Google Scholar 

  12. Goldschmidt EE, Monselise SP (1977) Physiological assumptions toward the development of a citrus fruiting model. Proc Int Soc Citric 1:668–672

    Google Scholar 

  13. Mehouachi J, Serna D, Zaragoza S, Agusti M, Talon M, Primo-Millo E (1995) Defoliation increases fruit abscission and reduces carbohydrate levels in developing fruits and woody tissues of Citrus unshiu. Plant Sci 107(2):189–197

    Article  CAS  Google Scholar 

  14. Iglesias DJ, Tadeo FR, Legaz F, Primo-Millo E, Talon M (2001) In vivo sucrose stimulation of colour change in citrus fruit epicarps: interactions between nutritional and hormonal signals. Physiol Plant 112(2):244–250

    Article  CAS  PubMed  Google Scholar 

  15. Cai JS, Zhuang ZY (2005) Effect of 4% GA EC on yield and quality of Citrus. Guangxi Trop Agr 2005 2:3–4

    Google Scholar 

  16. Zhou GF, Peng SA, Liu YZ, Wei QJ, Han J, Islam MZ (2014) The physiological and nutritional responses of seven different citrus rootstock seedlings to boron deficiency. Trees 28:295–307

    Article  CAS  Google Scholar 

  17. Li SB, Ouyang WZ, Hou XJ, Xie LL, Hu CG, Zhang JZ (2015) Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Front Plant Sci 6:119

    PubMed  PubMed Central  Google Scholar 

  18. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291

    Article  CAS  PubMed  Google Scholar 

  19. Guo AY, Zhu QH, Chen X (2007) GSDS:a gene structure display server. Hereditas 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469

    Article  Google Scholar 

  22. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu YZ, Liu Q, Tao NG, Deng XX (2006) Efficient isolation of RNA from fruit peel and pulp of ripening navel orange (Citrus sinensis osbeck). J Huazhong Agric Univ 25:300–304

    CAS  Google Scholar 

  24. Liu X, Hu XM, Jin LF, Shi CY, Liu YZ, Peng SA (2014) Identification and transcript analysis of two glutamate decarboxylase genes, CsGAD1 and CsGAD2, reveal the strong relationship between CsGAD1 and citrate utilization in citrus fruit. Mol Biol Rep 41:6253–6262

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  26. Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  27. Bhagsari A, Brown R (1986) Leaf photosynthesis and its correlation with leaf area. Crop Sci 26(1):127–132

    Article  Google Scholar 

  28. Martínez-Cortina C, Sanz A, Guardiola J (1989) Possible involvement of gibberellins on leaf expansion and carbohydrate accumulation in citrus/mögliche rolle der gibberelline bei wachstum und kohlenhydratspeicherung in citrusblättern. Die Gartenbauwissenschaft 54(6):268–272

    Google Scholar 

  29. Kuijt SJ, Greco R, Agalou A, Shao J, CJ‘t Hoen C, Övernäs E, Osnato M, Curiale S, Meynard D, van Gulik R (2014) Interaction between the growth-regulating factor and knotted1-like homeobox families of transcription factors. Plant Physiol 164(4):1952–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Gene Dev 15(5):581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the earmarked fund for China Agriculture Research System (CARS-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Zhong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2016_4048_MOESM1_ESM.pdf

Fig. s1 Gene confirmation of CsGRFs. M refers to DL2000 plus DNA marker; the PCR products in lane 1–9 is CsGRF1-CsGRF9, respectively. Supplementary material 1 (PDF 28 kb)

Supplementary material 2 (DOCX 12 kb)

Supplementary material 3 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Guo, LX., Jin, LF. et al. Identification and transcript profiles of citrus growth-regulating factor genes involved in the regulation of leaf and fruit development. Mol Biol Rep 43, 1059–1067 (2016). https://doi.org/10.1007/s11033-016-4048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4048-1

Keywords

Navigation