Skip to main content

Advertisement

Log in

Microarray analysis of cultured rat hippocampal neurons treated with brain derived neurotrophic factor

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Brain derived neurotrophic factor (BDNF) has been shown to exert multiple actions on neurons. It plays a role in neuronal growth and maintenance and use-dependent plasticity, such as long-term potentiation and learning. This neurotrophin is believed to regulate neuronal plasticity by modifying neuronal excitability and morphology. There is experimental evidence for both an acute and a long-term effect of BDNF on synaptic transmission and structure but the molecular mechanisms underlying these events have not been completely clarified. In order to study the BDNF-induced molecular changes, the set of genes modulated in cultured hippocampal neurons by BDNF treatment was investigated after subchronic treatment with the neurotrophin. Microarray analysis performed with these cells, revealed increased expression of mRNA encoding the neuropeptides neuropeptide Y and somatostatin, and of the secreted peptide VGF (non acronymic), all of which participate in neurotransmission. In addition, the expression of genes apolipoprotein E (ApoE), delta-6 fatty acid desaturase (Fads2) and matrix metalloproteinase 14 (Mmp14), which play a role in neuronal remodelling, was also enhanced. More studies are needed to investigate and confirm the role of these genes in synaptic plasticity, but the results reported in this paper show that microarray analysis of hippocampal cultures can be used to expand our current knowledge of the molecular events triggered by BDNF in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chao MV (2000) Trophic factors: an evolutionary cul-de-sac or door into higher neuronal function? J Neurosci Res 59:353–355

    Article  CAS  PubMed  Google Scholar 

  2. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    Article  CAS  PubMed  Google Scholar 

  3. Tyler WJ, Pozzo-Miller LD (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 21:4249–4258

    CAS  PubMed  Google Scholar 

  4. Lu B (2004) Acute and long-term synaptic modulation by neurotrophins. Prog Brain Res 146:137–150

    CAS  PubMed  Google Scholar 

  5. Poo M (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32

    Article  CAS  PubMed  Google Scholar 

  6. Geinisman Y (2000) Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb Cortex 10:952–962

    Article  CAS  PubMed  Google Scholar 

  7. Labelle C, Leclerc N (2000) Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons. Brain Res 123:1–11

    Article  CAS  Google Scholar 

  8. Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10:345–352

    Article  CAS  PubMed  Google Scholar 

  9. Bocchio-Chiavetto L, Zanardini R, Bortolomasi M, Abate M, Segala M, Giacopuzzi M, Riva MA, Marchina E, Pasqualetti P, Perez J, Gennarelli M (2006) Electroconvulsive Therapy (ECT) increases serum Brain Derived Neurotrophic Factor (BDNF) in drug resistant depressed patients. Eur Neuropsychopharmacol 16:620–624

    Article  CAS  PubMed  Google Scholar 

  10. Shakhbazau A, Shcharbin D, Seviaryn I, Goncharova N, Kosmacheva S, Potapnev M, Gabara B, Ionov M, Bryszewska M (2009) Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells. Mol Biol Rep 37:2003–2008

    Article  PubMed  Google Scholar 

  11. Liu WM, Laux H, Henry JY, Bolton TB, Dalgleish AG, Galustian C (2009) A microarray study of altered gene expression in colorectal cancer cells after treatment with immunomodulatory drugs: differences in action in vivo and in vitro. Mol Biol Rep. doi:10.1007/s11033-009-9614-3

  12. Ring RH, Alder J, Fennell M, Kouranova E, Black IB, Thakker-Varia S (2006) Transcriptional profiling of brain-derived-neurotrophic factor-induced neuronal plasticity: a novel role for nociceptin in hippocampal neurite outgrowth. J Neurobiol 66:361–377

    Article  CAS  PubMed  Google Scholar 

  13. Alder J, Thakker-Varia S, Bangasser DA, Kuroiwa M, Plummer MR, Shors TJ, Black IB (2003) Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. J Neurosci 23:10800–10808

    CAS  PubMed  Google Scholar 

  14. Patel MN, McNamara JO (1995) Selective enhancement of axonal branching of cultured dentate gyrus neurons by neurotrophic factors. Neuroscience 69:763–770

    Article  CAS  PubMed  Google Scholar 

  15. Livak K, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  16. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  17. Sun QQ, Akk G, Huguenard JR, Prince DA (2001) Differential regulation of GABA release and neuronal excitability mediated by neuropeptide Y1 and Y2 receptors in rat thalamic neurons. J Physiol 531:81–94

    Article  CAS  PubMed  Google Scholar 

  18. Jin QJ, Sun JJ, Fang XT, Zhang CL, Yang L, Chen DX, Shi XY, Du Y, Lan XY, Chen H (2010) Molecular characterization and polymorphisms of the caprine Somatostatin (SST) and SST Receptor 1 (SSTR1) genes that are linked with growth traits. Mol Biol Rep. doi:10.1007/s11033-010-9983-7

  19. Lindholm D, da Penha Berzaghi M, Cooper J, Thoenen H, Castren E (1994) Brain-derived neurotrophic factor and neurotrophin-4 increase neurotrophin-3 expression in the rat hippocampus. Int J Dev Neurosci 12:745–751

    Article  CAS  PubMed  Google Scholar 

  20. Hu P, Qin YH, Jing CX, Lei FY, Chen P, Li MF (2009) Association of polymorphisms at restriction enzyme recognition sites of apolipoprotein B and E gene with dyslipidemia in children undergoing primary nephrotic syndrome. Mol Biol Rep 36:1015–1021. doi:10.1007/s11033-008-9275-7

    Article  CAS  PubMed  Google Scholar 

  21. Champagne D, Rochford J, Poirier J (2005) Effect of apolipoprotein E deficiency on reactive sprouting in the dentate gyrus of the hippocampus following entorhinal cortex lesion: role of the astroglial response. Exp Neurol 194:31–42

    Article  CAS  PubMed  Google Scholar 

  22. Cho HP, Nakamura MT, Clarke SD (1999) Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase. J Biol Chem 274:471–477

    Article  CAS  PubMed  Google Scholar 

  23. Nakada T, Kwee IL, Ellis WG (1990) Membrane fatty acid composition shows delta-6-desaturase abnormalities in Alzheimer’s disease. NeuroReport 1:153–155

    Article  CAS  PubMed  Google Scholar 

  24. Ulrich R, Gerhauser I, Seeliger F, Baumgartner W, Alldinger S (2005) Matrix metalloproteinases and their inhibitors in the developing mouse brain and spinal cord: a reverse transcription quantitative polymerase chain reaction study. Dev Neurosci 27:408–418

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Sun DL, Duan YN, Zhang XJ, Wang N, Zhou RM, Chen ZF, Wang SJ (2010) Association of functional polymorphisms in MMPs genes with gastric cardia adenocarcinoma and esophageal squamous cell carcinoma in high incidence region of North China. Mol Biol Rep 37:197–205

    Article  CAS  PubMed  Google Scholar 

  26. Lee A, Beck L, Brown RJ, Markovich D (1999) Identification of a mammalian brain sulphate transporter. Biochem Biophys Res Commun 263:123–129

    Article  CAS  PubMed  Google Scholar 

  27. Nishihara S, Iwasaki H, Nakajima K, Togayachi A, Ikehara Y, Kudo T, Kushi Y, Furuya A, Shitara K, Narimatsu H (2003) Alpha1, 3-fucosyltransferase IX (Fut9) determines Lewis X expression in brain. Glycobiology 13:445–455

    Article  CAS  PubMed  Google Scholar 

  28. Rage F, Riteau B, Alonso G, Tapia-Arancibia L (1999) Brain-derived neurotrophic factor and neurotrophin-3 enhance somatostatin gene expression through a likely direct effect on hypothalamic somatostatin neurons. Endocrinology 140:909–916

    Article  CAS  PubMed  Google Scholar 

  29. Reibel S, Vivien-Roels B, Le BT, Larmet Y, Carnahan J, Marescaux C, Depaulis A (2000) Overexpression of neuropeptide Y induced by brain-derived neurotrophic factor in the rat hippocampus is long lasting. Eur J Neurosci 12:595–605

    Article  CAS  PubMed  Google Scholar 

  30. Eagleson KL, Fairfull LD, Salton SR, Levitt P (2001) Regional differences in neurotrophin availability regulate selective expression of VGF in the developing limbic cortex. J Neurosci 21:9315–9324

    CAS  PubMed  Google Scholar 

  31. Farhadi HF, Mowla SJ, Petrecca K, Morris SJ, Seidah NG, Murphy RA (2000) Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. J Neurosci 20:4059–4068

    CAS  PubMed  Google Scholar 

  32. Massa A, Barbieri F, Aiello C, Arena S, Pattarozzi A, Pirani P, Corsaro A, Iuliano R, Fusco A, Zona G, Spaziante R, Florio T, Schettini G (2004) The expression of the phosphotyrosine phosphatase DEP-1/PTPeta dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation. J Biol Chem 279:29004–29012

    Article  CAS  PubMed  Google Scholar 

  33. Ohkubo N, Mitsuda N, Tamatani M, Yamaguchi A, Lee YD, Ogihara T, Vitek MP, Tohyama M (2001) Apolipoprotein E4 stimulates cAMP response element-binding protein transcriptional activity through the extracellular signal-regulated kinase pathway. J Biol Chem 276:3046–3053

    Article  CAS  PubMed  Google Scholar 

  34. Toschi E, Barillari G, Sgadari C, Bacigalupo I, Cereseto A, Carlei D, Palladino C, Zietz C, Leone P, Stürzl M, Buttò S, Cafaro A, Monini P, Ensoli B (2001) Activation of matrix-metalloproteinase-2 and membrane-type-1-matrix-metalloproteinase in endothelial cells and induction of vascular permeability in vivo by human immunodeficiency virus-1 Tat protein and basic fibroblast growth factor. Mol Biol Cell 12:2934–2946

    CAS  PubMed  Google Scholar 

  35. Voigt P, Ma YJ, Gonzalez D, Fahrenbach WH, Wetsel WC, Berg-von der Emde K, Hill DF, Taylor KG, Costa ME, Seidah NG et al (1996) Neural and glial-mediated effects of growth factors acting via tyrosine kinase receptors on luteinizing hormone-releasing hormone neurons. Endocrinology 137:2593–2605

    Article  CAS  PubMed  Google Scholar 

  36. Zhu X, Lamango NS, Lindberg I (1996) Involvement of a polyproline helix-like structure in the interaction of 7B2 with prohormone convertase 2. J Biol Chem 271:23582–23587

    Article  CAS  PubMed  Google Scholar 

  37. Watson JD, Oster SK, Shago M, Khosravi F, Penn LZ (2002) Identifying genes regulated in a myc-dependent manner. J Biol Chem 277:36921–36930

    Article  CAS  PubMed  Google Scholar 

  38. D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479

    Article  PubMed  Google Scholar 

  39. Hartmann D, De Strooper B, Saftig P (1999) Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly. Curr Biol 15:719–727

    Article  Google Scholar 

  40. Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, Kreidberg JA, Anton ES (2000) Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33–44

    Article  CAS  PubMed  Google Scholar 

  41. Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952. http://www.ingenuity.com/

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated with sorrow and affection to the memory of Silvia Mion, who died prematurely in 2006. The authors would like to thank Dr. Francesca Marini, Dr. Mario Altieri, Mr. Federico Faggioni and Mr. Claudio Righetti (GlaxoSmithKline, Italy) for their expert assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Cazzin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazzin, C., Mion, S., Caldara, F. et al. Microarray analysis of cultured rat hippocampal neurons treated with brain derived neurotrophic factor. Mol Biol Rep 38, 983–990 (2011). https://doi.org/10.1007/s11033-010-0193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0193-0

Keywords

Navigation