Skip to main content

Advertisement

Log in

Synthesis and anticholinesterase activity of novel non-hepatotoxic naphthyridine-11-amine derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In the present study, 14 novel naphthyridine-11-amine derivatives were synthesized and their inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were evaluated. 12-(4-Fluorophenyl)-1,2,3,4,7,8,9,10-octahydrodibenzo[b,g][1, 8]naphthyridin-11-amine (4a) was found to be the most potent AChE inhibitor with IC50 value of 0.091 µM, and 12-(2,3-dimethoxyphenyl)-1,2,3,4,7,8,9,10-octahydrodibenzo[b,g][1,8]naphthyridin-11-amine (4h) exhibited the strongest inhibition against BuChE with IC50 value of 0.182 µM. Additionally, hepatocellular carcinoma (HepG2) cell cytotoxicity assay for the synthesized compounds was investigated and the results showed negligible cell death. Log P values of the synthesized compounds were also calculated using ChemSketch program. Moreover, the blood–brain barrier (BBB) permeability of the potent AChE inhibitor (4a) was assessed by the widely used parallel artificial membrane permeability assay (PAMPA-BBB). The results showed that 4a is capable of crossing the BBB.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2

Similar content being viewed by others

References

  1. Mermer A, Demirbas N, Sirin Y, Uslu H, Ozdemir Z, Demirbas A (2018) Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular docking studies of new quinolone-triazole hybrids. Bioorg Chem 78:236–248. https://doi.org/10.1016/j.bioorg.2018.03.017

    Article  CAS  PubMed  Google Scholar 

  2. Kumar K, Kumar A, Keegan RM, Deshmukh R (2018) Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed Pharmacother 98:297–307. https://doi.org/10.1016/j.biopha.2017.12.053

    Article  CAS  PubMed  Google Scholar 

  3. Liu ZK, Fang L, Zhang H, Gou SH, Chen L (2017) Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg Med Chem 25(8):2387–2398. https://doi.org/10.1016/j.bmc.2017.02.049

    Article  CAS  PubMed  Google Scholar 

  4. Ulus R, Kurt BZ, Gazioglu I, Kaya M (2017) k Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg Chem 70:245–255. https://doi.org/10.1016/j.bioorg.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  5. Eghtedari M, Sarrafi Y, Nadri H, Mahdavi M, Moradi A, Moghadam FH, Emami S, Firoozpour L, Asadipour A, Sabzevari O, Foroumadi A (2017) New tacrine-derived AChE/BuChE inhibitors: synthesis and biological evaluation of 5-amino-2-phenyl-4H-pyrano[2,3-b] quinoline-3-carboxylates. Eur J Med Chem 128:237–246. https://doi.org/10.1016/j.ejmech.2017.01.042

    Article  CAS  PubMed  Google Scholar 

  6. Wiemann J, Loesche A, Csuk R (2017) Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Bioorg Chem 74:145–157. https://doi.org/10.1016/j.bioorg.2017.07.013

    Article  CAS  Google Scholar 

  7. Hamulakova S, Imrich J, Janovec L, Kristian P, Danihel I, Holas O, Pohanka M, Bohm S, Kozurkova M, Kuca K (2014) Novel tacrine/acridine anticholinesterase inhibitors with piperazine and thiourea linkers. Int J Biol Macromol 70:435–439. https://doi.org/10.1016/j.ijbiomac.2014.06.064

    Article  CAS  PubMed  Google Scholar 

  8. Oztaskin N, Taslimi P, Maras A, Gulcin I, Goksu S (2017) Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg Chem 74:104–114. https://doi.org/10.1016/j.bioorg.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  9. Wiemann J, Karasch J, Loesche A, Heller L, Brandt W, Csuk R (2017) Piperlongumine B and analogs are promising and selective inhibitors for acetylcholinesterase. Eur J Med Chem 139:222–231. https://doi.org/10.1016/j.ejmech.2017.07.081

    Article  CAS  PubMed  Google Scholar 

  10. Aouani I, Sellami B, Lahbib K, Cavalier JF, Touil S (2017) Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity. Bioorg Chem 72:301–307. https://doi.org/10.1016/j.bioorg.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  11. Kurt BZ, Gazioglu I, Sonmez F, Kucukislamoglu M (2015) Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives. Bioorg Chem 59:80–90. https://doi.org/10.1016/j.bioorg.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  12. Cen J, Guo HY, Hong C, Lv JW, Yang YC, Wang T, Fang D, Luo W, Wang CJ (2018) Development of tacrine-bifendate conjugates with improved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity. Eur J Med Chem 144:128–136. https://doi.org/10.1016/j.ejmech.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Chigurupati S, Selvaraj M, Mani V, Selvarajan KK, Mohammad JI, Kaveti B, Bera H, Palanimuthu VR, Teh LK, Salleh MZ (2016) Identification of novel acetylcholinesterase inhibitors: indolopyrazoline derivatives and molecular docking studies. Bioorg Chem 67:9–17. https://doi.org/10.1016/j.bioorg.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  14. He DD, Wu H, Wei Y, Liu W, Huang F, Shi HT, Zhang BB, Wu XJ, Wang CH (2015) Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice. Eur J Pharmacol 768:96–107. https://doi.org/10.1016/j.ejphar.2015.10.037

    Article  CAS  PubMed  Google Scholar 

  15. Topal F, Gulcin I, Dastan A, Guney M (2017) Novel eugenol derivatives: potent acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol 94:845–851. https://doi.org/10.1016/j.ijbiomac.2016.10.096

    Article  CAS  PubMed  Google Scholar 

  16. Zhou LY, Zhu Y, Jiang YR, Zhao XJ, Guo D (2017) Design, synthesis and biological evaluation of dual acetylcholinesterase and phosphodiesterase 5A inhibitors in treatment for Alzheimer’s disease. Bioorg Med Chem Lett 27(17):4180–4184. https://doi.org/10.1016/j.bmcl.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  17. Pourabdi L, Khoobi M, Nadri H, Moradi A, Moghadam FH, Emami S, Mojtahedi MM, Haririan I, Forootanfar H, Ameri A, Foroumadi A, Shafiee A (2016) Synthesis and structure–activity relationship study of tacrine-based pyrano[2,3-c]pyrazoles targeting AChE/BuChE and 15-LOX. Eur J Med Chem 123:298–308. https://doi.org/10.1016/j.ejmech.2016.07.043

    Article  CAS  PubMed  Google Scholar 

  18. Gao CP, Ding Y, Zhong LF, Jiang LP, Geng CY, Yao XF, Cao J (2014) Tacrine induces apoptosis through lysosome- and mitochondria-dependent pathway in HepG2 cells. Toxicol In Vitro 28(4):667–674. https://doi.org/10.1016/j.tiv.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  19. Esquivias-Perez M, Maalej E, Romero A, Chabchoub F, Samadi A, Marco-Contelles J, Oset-Gasque MJ (2013) Nontoxic and neuroprotective beta-naphthotacrines for Alzheimer’s disease. Chem Res Toxicol 26(6):986–992. https://doi.org/10.1021/tx400138s

    Article  CAS  PubMed  Google Scholar 

  20. Hiremathad A, Keri RS, Esteves AR, Cardoso SM, Chaves S, Santos MA (2018) Novel tacrine-hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur J Med Chem 148:255–267. https://doi.org/10.1016/j.ejmech.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  21. Li GL, Hong G, Li XY, Zhang Y, Xu ZP, Mao LN, Feng XZ, Liu TJ (2018) Synthesis and activity towards Alzheimer’s disease in vitro: tacrine, phenolic acid and ligustrazine hybrids. Eur J Med Chem 148:238–254. https://doi.org/10.1016/j.ejmech.2018.01.028

    Article  CAS  PubMed  Google Scholar 

  22. Dgachi Y, Sokolov O, Luzet V, Godyn J, Panek D, Bonet A, Martin H, Iriepa I, Moraleda I, Garcia-Iriepa C, Janockova J, Richert L, Soukup O, Malawska B, Chabchoub F, Marco-Contelles J, Ismaili L (2017) Tetrahydropyranodiquinolin-8-amines as new, non hepatotoxic, antioxidant, and acetylcholinesterase inhibitors for Alzheimer’s disease therapy. Eur J Med Chem 126:576–589. https://doi.org/10.1016/j.ejmech.2016.11.050

    Article  CAS  PubMed  Google Scholar 

  23. Hepnarova V, Korabecny J, Matouskova L, Jost P, Muckova L, Hrabinova M, Vykoukalova N, Kerhartova M, Kucera T, Dolezal R, Nepovimova E, Spilovska K, Mezeiova E, Pham NL, Jun D, Staud F, Kaping D, Kuca K, Soukup O (2018) The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease. Eur J Med Chem 150:292–306. https://doi.org/10.1016/j.ejmech.2018.02.083

    Article  CAS  PubMed  Google Scholar 

  24. Reddy EK, Remya C, Mantosh K, Sajith AM, Omkumar RV, Sadasivan C, Anwar S (2017) Novel tacrine derivatives exhibiting improved acetylcholinesterase inhibition: design, synthesis and biological evaluation. Eur J Med Chem 139:367–377. https://doi.org/10.1016/j.ejmech.2017.08.013

    Article  CAS  PubMed  Google Scholar 

  25. Ceschi MA, da Costa JS, Lopes JPB, Camara VS, Campo LF, Borges ACD, Goncalves CAS, de Souza DF, Konrath EL, Karl ALM, Guedes IA, Dardenne LE (2016) Novel series of tacrine-tianeptine hybrids: synthesis, cholinesterase inhibitory activity, S10013 secretion and a molecular modeling approach. Eur J Med Chem 121:758–772. https://doi.org/10.1016/j.ejmech.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  26. Sameem B, Saeedi M, Mahdavi M, Shafiee A (2017) A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur J Med Chem 128:332–345. https://doi.org/10.1016/j.ejmech.2016.10.060

    Article  CAS  PubMed  Google Scholar 

  27. Jalili-Baleh L, Nadri H, Moradi A, Bukhari SNA, Shakibaie M, Jafari M, Golshani M, Moghadam FH, Firoozpour L, Asadipour A, Emami S, Khoobi M, Foroumadi A (2017) New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur J Med Chem 139:280–289. https://doi.org/10.1016/j.ejmech.2017.07.072

    Article  CAS  Google Scholar 

  28. Mantri M, de Graaf O, van Veldhoven J, Goblyos A, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Link R, de Vries H, Beukers MW, Brussee J, Ijzerman AP (2008) 2-Amino-6-furan-2-yl-4-substituted nicotinonitriles as A2A adenosine receptor antagonists. J Med Chem 51(15):4449–4455. https://doi.org/10.1021/jm701594y

    Article  CAS  PubMed  Google Scholar 

  29. Altundas A, Gul B, Cankaya M, Atasever A, Gulcin I (2017) Synthesis of 2-amino-3-cyanopyridine derivatives and investigation of their carbonic anhydrase inhibition effects. J Biochem Mol Toxicol 31(12):e21998. https://doi.org/10.1002/jbt.21998

    Article  CAS  Google Scholar 

  30. Mao F, Li JH, Wei H, Huang L, Li XS (2015) Tacrine-propargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 30(6):995–1001. https://doi.org/10.3109/14756366.2014.1003212

    Article  CAS  PubMed  Google Scholar 

  31. Yang LP, Li JR, Chai HX, Lu HY, Zhang Q, Shi DX (2013) A divergent synthesis of 1,8-naphthyridines and hydropyridopyrimidinones by the reactions of o-aminonitriles with ketones. Chinese J Chem 31(4):443–448. https://doi.org/10.1002/cjoc.201201247

    Article  CAS  Google Scholar 

  32. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  33. Sonmez F, Kurt BZ, Gazioglu I, Basile L, Dag A, Cappello V, Ginex T, Kucukislamoglu M, Guccione S (2017) Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J Enzym Inhib Med Chem 32(1):285–297. https://doi.org/10.1080/14756366.2016.1250753

    Article  CAS  Google Scholar 

  34. Tetko IV, Varbanov HP, Galanski M, Talmaciu M, Platts JA, Ravera M, Gabano E (2016) Prediction of logP for Pt(II) and Pt(IV) complexes: comparison of statistical and quantum-chemistry based approaches. J Inorg Biochem 156:1–13. https://doi.org/10.1016/j.jinorgbio.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  35. Osterberg T, Norinder U (2001) Prediction of drug transport processes using simple parameters and PLS statistics—the use of ACD/logP and ACD/ChemSketch descriptors. Eur J Pharm Sci 12(3):327–337. https://doi.org/10.1016/S0928-0987(00)00189-5

    Article  CAS  PubMed  Google Scholar 

  36. Perez-Areales FJ, Di Pietro O, Espargaro A, Vallverdu-Queralt A, Galdeano C, Ragusa IM, Viayna E, Guillou C, Clos MV, Perez B, Sabate R, Lamuela-Raventos RM, Luque FJ, Munoz-Torrero D (2014) Shogaol-huprine hybrids: dual antioxidant and anticholinesterase agents with beta-amyloid and tau anti-aggregating properties. Bioorg Med Chem 22(19):5298–5307. https://doi.org/10.1016/j.bmc.2014.07.053

    Article  CAS  PubMed  Google Scholar 

  37. Di L, Kerns EH, Fan K, McConnell OJ, Carter GT (2003) High throughput artificial membrane permeability assay for blood–brain barrier. Eur J Med Chem 38(3):223–232. https://doi.org/10.1016/S0223-5234(03)00012-6

    Article  CAS  PubMed  Google Scholar 

  38. Nepovimova E, Korabecny J, Dolezal R, Babkova K, Ondrejicek A, Jun D, Sepsova V, Horova A, Hrabinova M, Soukup O, Bukum N, Jost P, Muckova L, Kassa J, Malinak D, Andrs M, Kuca K (2015) Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low ın vivo toxicity. J Med Chem 58(22):8985–9003. https://doi.org/10.1021/acs.jmedchem.5b01325

    Article  CAS  PubMed  Google Scholar 

  39. Chen X, Murawski A, Patel K, Crespi CL, Balimane PV (2008) A novel design of artificial membrane for improving the PAMPA model. Pharm Res 25(7):1511–1520. https://doi.org/10.1007/s11095-007-9517-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bezmialem Research Fund of the Bezmialem Vakif University. Project Number: 3.2018/5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belma Zengin Kurt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zengin Kurt, B. Synthesis and anticholinesterase activity of novel non-hepatotoxic naphthyridine-11-amine derivatives. Mol Divers 23, 625–638 (2019). https://doi.org/10.1007/s11030-018-9897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9897-1

Keywords

Navigation