Skip to main content
Log in

Iterative inverse kinematics for robot manipulators using quaternion algebra and conformal geometric algebra

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents a set of generalized iterative algorithms to find the inverse position kinematics of n-degree-of-freedom kinematic chains with revolute joints. As a first approach, an iterative algorithm is developed using the gradient descent method in Quaternion Algebra to find both the inverse position and velocity kinematics solution in redundant systems closest to their initial configuration. Additionally, a generalized extension of this approach is developed employing screw rotors and Conformal Geometric Algebra, where efficient update rules are obtained to solve the problem of inverse position kinematics. Simulation experiments using different degree-of-freedom models as well as real-time experiments using a Geomagic Touch Haptic device are carried out to demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Hamilton W (1866) Elements of quaternions. Green & Co, London

    Google Scholar 

  2. Hart C, Francis K, Kauffman H (1994) Visualizing quaternion rotation. ACM Trans Graph 13(3):256–276

    Article  Google Scholar 

  3. Shoemake K (1985) Animating rotation with quaternion curves. In: Proceedings of the 12th annual conference on computer graphics and interactive techniques, pp 245–254

    Google Scholar 

  4. Featherstone R (1983) Position and velocity transformations between robot end-effector coordinates and joint angles. Int J Robot Res 2(2):35–45

    Article  Google Scholar 

  5. Bayro-Corrochano E, Daniilidis K, Sommer G (2000) Motor algebra for 3D kinematics: The case of the hand-eye calibration. J Math Imag Vis 13(2):79–99

    Article  MathSciNet  Google Scholar 

  6. Bayro-Corrochano E, Reyes-Lozano L, Zamora-Esquivel J (2006) Conformal geometric algebra for robotic vision. J Math Imag Vis 24(1):55–81

    Article  MathSciNet  Google Scholar 

  7. Macias-Garcia E, Zamora-Esquivel J, Bayro-Corrochano E (2020) Conformal geometric algebra library for MATLAB. https://github.com/iqedgarmg/conformal_library. Accessed 12 Dec 2020

  8. Hamilton W (1853) Lectures on quaternions. Hodges and Smith, Dublin

    Google Scholar 

  9. Bayro-Corrochano E (2020) Geometric algebra application, vol II: Robot modelling and control. Springer, London

    Book  Google Scholar 

  10. Goldman R (2010) Rethinking quaternions. Morgan Claypool 4(1):157–157

    MathSciNet  MATH  Google Scholar 

  11. Lechuga-Gutierrez L, Medrano-Hermosillo J, Bayro-Corrochano E (2018) Quaternion spiking neural networks control for robotics. In: 2018 IEEE Latin American conference on computational intelligence, pp 1–6

  12. Peijun Y, Keqiang X, Jiancheng L (2011) A design of reconfigurable satellite control system with reaction wheels based on error quaternion model. In: 2011 International conference on internet computing and information services, pp 215–218

  13. Vince J (2016) Mathematics for computer graphics. Springer, London

    MATH  Google Scholar 

  14. XiaoLong Y, HongTao W, Yao L, et al (2019) Computationally efficient inverse dynamics of a class of six-DoF parallel robots: Dual quaternion approach. J Intell Robot Sys 94(1):101–113

    Article  Google Scholar 

  15. Cuevas-Jimenez E, Osuna-Enciso J, Oliva-Navarro D (2016) Optimización, algoritmos programados con MATLAB. Alfaomega, México

  16. Curry H (1944) The method of steepest descent for non-linear minimization problems. Quarter Appl Math 2(3):258–261

    Article  MathSciNet  Google Scholar 

  17. Jones M (2005) AI application programming. Charles River Media, Massachusetts

    Google Scholar 

  18. Hamming R (1973) Numerical methods for scientists and engineers, 2nd edn. Dover Publications Inc, New York

    MATH  Google Scholar 

  19. Fuente J, Santiago J, Román A et al (2014) Handbook on robotics, vol 25. Springer, Berling, pp 1682–1690

    Google Scholar 

  20. Radavelli L, Martins D, De Pieri E, Simoni R (2015) Cinemática posicional de robôs via iteração e quatérnios. Proc Ser Brazilian Soc Comput Appl Math 3(1):1

    Google Scholar 

  21. Bayro-Corrochano E, Zamora-Esquivel J (2007) Differential and inverse kinematics of robot devices using conformal geometric algebra. Robotica 25(1):43–61

    Article  Google Scholar 

  22. Lechuga-Gutierrez L, Macias-Garcia E, Martinez-Terán G, Zamora-Esquivel J, Bayro-Corrochano E (2021) Iterative inverse kinematics for robot manipulators using quaternion algebra and conformal geometric algebra: supplementary material. drive.google.com/drive/folders/11DfFiQ8wZsfY31VDIK2i-Mg0rnHeucCM. Accessed 25 Jun 2021

  23. Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

  24. Moré J (1978) The Levenberg–Marquardt algorithm: implementation and theory. In: Numerical analysis. Springer, Berlin, pp 105–116

    Chapter  Google Scholar 

  25. Jarillo-Silva A, Domínguez-Ramírez O, Parra-Vega V, Ordaz-Oliver J (2009) Phantom Omni Haptic device: kinematics and manipulability. In: IEEE electronics, robotics and automotive mechanics conference, pp 193–198

  26. Ogata K (2010) Ingeniería de control moderna. Pearson Education, S.A. Madrid

Download references

Acknowledgements

The authors would like to thank CONACYT and CINVESTAV-IPN for the scholarship and the economic and technological support for the realization of this work.

Funding

This work was supported by CONACYT institute and CINVESTAV-IPN.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of this work. L. Lechuga-Gutierrez: Paper writing, main contributions in Sects. 2, 3 and 6. E. Macias-Garcia: Paper writing, document review, main contributions in Sects. 2, 4 and 5. G. Martínez-Terán: Main contributions in Sect. 6. J. Zamora-Esquivel: Document review, main contributions in Sects. 4 and 5. E. Bayro-Corrochano: Paper writing, document review, project supervision.

Corresponding author

Correspondence to E. Bayro-Corrochano.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Code availability

The Conformal Geometric Algebra library developed in this work is available at: github.com/iqedgarmg/conformal_library while additional multimedia resources at: drive.google.com/drive/folders/11DfFiQ8wZsfY31VDIK2i-Mg0rnHeucCM.

Ethical approval

Not applicable

Consents to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lechuga-Gutierrez, L., Macias-Garcia, E., Martínez-Terán, G. et al. Iterative inverse kinematics for robot manipulators using quaternion algebra and conformal geometric algebra. Meccanica 57, 1413–1428 (2022). https://doi.org/10.1007/s11012-022-01512-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01512-w

Keywords

Navigation