Skip to main content

Advertisement

Log in

Creatine plus pyruvate supplementation prevents oxidative stress and phosphotransfer network disturbances in the brain of rats subjected to chemically-induced phenylketonuria

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism. Usually diagnosed within the first month of birth, it is essential that the patient strictly follow the dietary restriction of natural protein intake. Otherwise, PKU impacts the development of the brain severely and may result in microcephaly, epilepsy, motor deficits, intellectual disability, and psychiatric and behavioral disorders. The neuropathology associated with PKU includes defects of myelination, insufficient synthesis of monoamine neurotransmitters, amino acid imbalance across the blood-brain barrier, and involves intermediary metabolic pathways supporting energy homeostasis and antioxidant defenses in the brain. Considering that the production of reactive oxygen species (ROS) is inherent to energy metabolism, we investigated the association of creatine+pyruvate (Cr + Pyr), both energy substrates with antioxidants properties, as a possible treatment to mitigate oxidative stress and phosphotransfer network impairment elicited in the brain of young Wistar rats by chemically-induced PKU. We induced PKU through the administration of α-methyl-L-phenylalanine and phenylalanine for 7 days, with and without Cr + Pyr supplementation, until postpartum day 14. The cotreatment with Cr + Pyr administered concurrently with PKU induction prevented ROS formation and part of the alterations observed in antioxidants defenses and phosphotransfer network enzymes in the cerebral cortex, hippocampus, and cerebellum. If such prevention also occurs in PKU patients, supplementing the phenylalanine-restricted diet with antioxidants and energetic substrates might be beneficial to these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PKU:

Phenylketonuria

IEM:

Inborn error of metabolism

PAH:

Phenylalanine hydroxylase

Phe:

Phenylalanine

HPA:

Hyperphenylalaninemia

ROS:

Reactive oxygen species

Cr:

Creatine

Pyr:

Pyruvate

αMePhe:

α-methyl-L-phenylalanine

DCFH:

2′,7′-dihydrodichlorofluorescein

SH:

Sulfhydryl groups

GSH:

Reduced glutathione

CAT:

Catalase

SOD:

Superoxide dismutase

GPx:

Glutathione peroxidase

CytCK:

Cytosolic creatine kinase

MtCK:

Mitochondrial creatine kinase

PCr:

Phosphocreatine

PK:

Pyruvate kinase

HK:

Hexokinase

AK:

Adenylate kinase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

OXPHOS:

Oxidative phosphorylation

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett 302(2–3):141–145

    CAS  PubMed  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136(3):269–293

    CAS  PubMed  Google Scholar 

  • Anderson PJ, Leuzzi V (2010) White matter pathology in phenylketonuria. Mol Genet Metab 99(Suppl 1):S3–S9

    CAS  PubMed  Google Scholar 

  • Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci U S A 106(33):14108–14113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berti SL, Nasi GM, Garcia C, Castro FL, Nunes ML, Rojas DB, Moraes TB, Dutra-Filho CS, Wannmacher CM (2012) Pyruvate and creatine prevent oxidative stress and behavioral alterations caused by phenylalanine administration into hippocampus of rats. Metab Brain Dis 27(1):79–89

    CAS  PubMed  Google Scholar 

  • Bilder DA, Burton BK, Coon H, Leviton L, Ashworth J, Lundy BD, Vespa H, Bakian AV, Longo N (2013) Psychiatric symptoms in adults with phenylketonuria. Mol Genet Metab 108(3):155–160

    CAS  PubMed  Google Scholar 

  • Bilder DA, Noel JK, Baker ER, Irish W, Chen Y, Merilainen MJ, Prasad S, Winslow BJ (2016) Systematic review and meta-analysis of neuropsychiatric symptoms and executive functioning in adults with phenylketonuria. Dev Neuropsychol 41(4):245–260

    PubMed  PubMed Central  Google Scholar 

  • Blau N (2016) Genetics of phenylketonuria: then and now. Hum Mutat 37(6):508–515

    CAS  PubMed  Google Scholar 

  • Bodner KE, Aldridge K, Moffitt AJ, Peck D, White DA, Christ SE (2012) A volumetric study of basal ganglia structures in individuals with early-treated phenylketonuria. Mol Genet Metab 107(3):302–307

    CAS  PubMed  Google Scholar 

  • Bortoluzzi VT, de Franceschi ID, Rieger E, Wannmacher CM (2014) Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring. Neurochem Res 39(8):1594–1602

    CAS  PubMed  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  • Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29(3–4):222–230

    CAS  PubMed  Google Scholar 

  • Calabrese V, Scapagnini G, Ravagna A, Fariello RG, Giuffrida Stella AM, Abraham NG (2002) Regional distribution of heme oxygenase, HSP70, and glutathione in brain: relevance for endogenous oxidant/antioxidant balance and stress tolerance. J Neurosci Res 68(1):65–75

    CAS  PubMed  Google Scholar 

  • Campese VM, Sindhu RK, Ye S, Bai Y, Vaziri ND, Jabbari B (2007) Regional expression of NO synthase, NAD(P)H oxidase and superoxide dismutase in the rat brain. Brain Res 1134(1):27–32

    CAS  PubMed  Google Scholar 

  • Cobley JN, Fiorello ML, Bailey DM (2018) 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 15:490–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21(2):111–116

    CAS  PubMed  Google Scholar 

  • Dimer NW, Ferreira BK, Agostini JF, Gomes ML, Kist LW, Malgarin F, Carvalho-Silva M, Gomes LM, Rebelo J, Frederico MJS, Silva F, Rico EP, Bogo MR, Streck EL, Ferreira GC, Schuck PF (2018) Brain bioenergetics in rats with acute hyperphenylalaninemia. Neurochem Int 117:188–203

    CAS  PubMed  Google Scholar 

  • Dos Reis EA, Rieger E, de Souza SS, Rasia-Filho AA, Wannmacher CM (2013) Effects of a co-treatment with pyruvate and creatine on dendritic spines in rat hippocampus and posterodorsal medial amygdala in a phenylketonuria animal model. Metab Brain Dis 28(3):509–517

    CAS  PubMed  Google Scholar 

  • Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206(Pt 12):2039–2047

    CAS  PubMed  Google Scholar 

  • Dzeja P, Terzic A (2009) Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10(4):1729–1772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dzeja P, Kalvenas A, Toleikis A, Praskevicius A (1985) The effect of adenylate kinase activity on the rate and efficiency of energy transport from mitochondria to hexokinase. Biochem Int 10(2):259–265

    CAS  PubMed  Google Scholar 

  • Dzeja PP, Hoyer K, Tian R, Zhang S, Nemutlu E, Spindler M, Ingwall JS (2011) Rearrangement of energetic and substrate utilization networks compensate for chronic myocardial creatine kinase deficiency. J Physiol 589(Pt 21):5193–5211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feksa LR, Cornelio AR, Rech VC, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2002) Alanine prevents the reduction of pyruvate kinase activity in brain cortex of rats subjected to chemically induced hyperphenylalaninemia. Neurochem Res 27(9):947–952

    CAS  PubMed  Google Scholar 

  • Feksa LR, Cornelio AR, Dutra-Filho CS, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex. Brain Res 968(2):199–205

    CAS  PubMed  Google Scholar 

  • Ficicioglu C, Dubroff JG, Thomas N, Gallagher PR, Burfield J, Hussa C, Randall R, Zhuang H (2013) A pilot study of Fluorodeoxyglucose positron emission tomography findings in patients with phenylketonuria before and during Sapropterin supplementation. J Clin Neurol 9(3):151–156

    PubMed  PubMed Central  Google Scholar 

  • Gal S, Zheng H, Fridkin M, Youdim MB (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95(1):79–88

    CAS  PubMed  Google Scholar 

  • Gonzalez MJ, Gutierrez AP, Gassio R, Fuste ME, Vilaseca MA, Campistol J (2011) Neurological complications and behavioral problems in patients with phenylketonuria in a follow-up unit. Mol Genet Metab 104(Suppl):S73–S79

    CAS  PubMed  Google Scholar 

  • de Groot MJ, Hoeksma M, Reijngoud DJ, de Valk HW, Paans AM, Sauer PJ, van Spronsen FJ (2013) Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet J Rare Dis 8:133

    PubMed  PubMed Central  Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623

    CAS  PubMed  Google Scholar 

  • Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R (2015) Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub? Biol Chem 396(5):523–537

    CAS  PubMed  Google Scholar 

  • Horster F, Schwab MA, Sauer SW, Pietz J, Hoffmann GF, Okun JG, Kolker S, Kins S (2006) Phenylalanine reduces synaptic density in mixed cortical cultures from mice. Pediatr Res 59(4 Pt 1):544–548

    PubMed  Google Scholar 

  • Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    CAS  PubMed  Google Scholar 

  • Kayaalp E, Treacy E, Waters PJ, Byck S, Nowacki P, Scriver CR (1997) Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype correlations. Am J Hum Genet 61(6):1309–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kienzle Hagen ME, Pederzolli CD, Sgaravatti AM, Bridi R, Wajner M, Wannmacher CM, Wyse AT, Dutra-Filho CS (2002) Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta 1586(3):344–352

    CAS  PubMed  Google Scholar 

  • Kladna A, Marchlewicz M, Piechowska T, Kruk I, Aboul-Enein HY (2015) Reactivity of pyruvic acid and its derivatives towards reactive oxygen species. Luminescence 30(7):1153–1158

    CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    CAS  PubMed  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290(1):47–52

    CAS  PubMed  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231

    CAS  PubMed  Google Scholar 

  • Leong SF, Lai JC, Lim L, Clark JB (1981) Energy-metabolizing enzymes in brain regions of adult and aging rats. J Neurochem 37(6):1548–1556

    CAS  PubMed  Google Scholar 

  • Long LH, Halliwell B (2009) Artefacts in cell culture: pyruvate as a scavenger of hydrogen peroxide generated by ascorbate or epigallocatechin gallate in cell culture media. Biochem Biophys Res Commun 388(4):700–704

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • MacDonald A, Gokmen-Ozel H, van Rijn M, Burgard P (2010) The reality of dietary compliance in the management of phenylketonuria. J Inherit Metab Dis 33(6):665–670

    PubMed  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    CAS  PubMed  Google Scholar 

  • Martynyuk AE, Glushakov AV, Sumners C, Laipis PJ, Dennis DM, Seubert CN (2005) Impaired glutamatergic synaptic transmission in the PKU brain. Mol Genet Metab 86(Suppl 1):S34–S42

    CAS  PubMed  Google Scholar 

  • Mazzola JL, Sirover MA (2005) Aging of human glyceraldehyde-3-phosphate dehydrogenase is dependent on its subcellular localization. Biochim Biophys Acta 1722(2):168–174

    CAS  PubMed  Google Scholar 

  • Meyer LE, Machado LB, Santiago AP, da Silva WS, De Felice FG, Holub O, Oliveira MF, Galina A (2006) Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem 281(49):37361–37371

    CAS  PubMed  Google Scholar 

  • Miller AL, Hawkins RA, Veech RL (1973) Phenylketonuria: phenylalanine inhibits brain pyruvate kinase in vivo. Science 179(4076):904–906

    CAS  PubMed  Google Scholar 

  • Moraes TB, Jacques CE, Rosa AP, Dalazen GR, Terra M, Coelho JG, Dutra-Filho CS (2013) Role of catalase and superoxide dismutase activities on oxidative stress in the brain of a phenylketonuria animal model and the effect of lipoic acid. Cell Mol Neurobiol 33(2):253–260

    CAS  PubMed  Google Scholar 

  • Moro N, Ghavim SS, Harris NG, Hovda DA, Sutton RL (2016) Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury. Brain Res 1642:270–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearsen KD, Gean-Marton AD, Levy HL, Davis KR (1990) Phenylketonuria: MR imaging of the brain with clinical correlation. Radiology 177(2):437–440

    CAS  PubMed  Google Scholar 

  • Perez-Duenas B, Pujol J, Soriano-Mas C, Ortiz H, Artuch R, Vilaseca MA, Campistol J (2006) Global and regional volume changes in the brains of patients with phenylketonuria. Neurology 66(7):1074–1078

    CAS  PubMed  Google Scholar 

  • Pfaendner NH, Reuner G, Pietz J, Jost G, Rating D, Magnotta VA, Mohr A, Kress B, Sartor K, Hahnel S (2005) MR imaging-based volumetry in patients with early-treated phenylketonuria. AJNR Am J Neuroradiol 26(7):1681–1685

    PubMed  PubMed Central  Google Scholar 

  • Pietz J, Rupp A, Ebinger F, Rating D, Mayatepek E, Boesch C, Kreis R (2003) Cerebral energy metabolism in phenylketonuria: findings by quantitative in vivo 31P MR spectroscopy. Pediatr Res 53(4):654–662

    PubMed  Google Scholar 

  • Preissler T, Bristot IJ, Costa BM, Fernandes EK, Rieger E, Bortoluzzi VT, de Franceschi ID, Dutra-Filho CS, Moreira JC, Wannmacher CM (2016) Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metab Brain Dis 31(3):529–537

    CAS  PubMed  Google Scholar 

  • Rae CD, Broer S (2015) Creatine as a booster for human brain function. How might it work? Neurochem Int 89:249–259

    CAS  PubMed  Google Scholar 

  • Rausell D, García-Blanco A, Correcher P, Vitoria I, Vento M, Cháfer-Pericás C (2019) Newly validated biomarkers of brain damage may shed light into the role of oxidative stress in the pathophysiology of neurocognitive impairment in dietary restricted phenylketonuria patients. Pediatr Res 85(2):242–250

    PubMed  Google Scholar 

  • Rech VC, Feksa LR, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2002) Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res 27(5):353–357

    CAS  PubMed  Google Scholar 

  • Reichmann D, Voth W, Jakob U (2018) Maintaining a healthy proteome during oxidative stress. Mol Cell 69(2):203–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas GS, Sitta A, Wajner M, Vargas CR (2011) Oxidative stress in phenylketonuria: what is the evidence? Cell Mol Neurobiol 31(5):653–662

    CAS  PubMed  Google Scholar 

  • Ryu JK, Choi HB, McLarnon JG (2006) Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington's disease. Neuroscience 141(4):1835–1848

    CAS  PubMed  Google Scholar 

  • Salminen LE, Paul RH (2014) Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review. Rev Neurosci 25(6):805–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanayama Y, Nagasaka H, Takayanagi M, Ohura T, Sakamoto O, Ito T, Ishige-Wada M, Usui H, Yoshino M, Ohtake A, Yorifuji T, Tsukahara H, Hirayama S, Miida T, Fukui M, Okano Y (2011) Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab 103(3):220–225

    CAS  PubMed  Google Scholar 

  • Schlattner U, Klaus A, Ramirez Rios S, Guzun R, Kay L, Tokarska-Schlattner M (2016) Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Amino Acids 48(8):1751–1774

    CAS  PubMed  Google Scholar 

  • Schuck PF, Malgarin F, Cararo JH, Cardoso F, Streck EL, Ferreira GC (2015) Phenylketonuria pathophysiology: on the role of metabolic alterations. Aging Dis 6(5):390–399

    PubMed  PubMed Central  Google Scholar 

  • Scriver CR (1995) The metabolic and molecular bases of inherited disease. McGraw-Hill, Health Professions Division, New York

    Google Scholar 

  • da Silva WS, Gomez-Puyou A, de Gomez-Puyou MT, Moreno-Sanchez R, De Felice FG, de Meis L, Oliveira MF, Galina A (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 279(38):39846–39855

    Google Scholar 

  • Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AG, Wajner M, Coelho DM, Llesuy S, Bello-Klein A, Giugliani R, Deon M, Vargas CR (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740(1):68–73

    CAS  PubMed  Google Scholar 

  • Smith, R. N., A. S. Agharkar and E. B. Gonzales (2014). "A review of creatine supplementation in age-related diseases: more than a supplement for athletes." F1000Res 3: 222

    PubMed  PubMed Central  Google Scholar 

  • Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D, Hargreaves IP (2017) Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders. J Clin Med 6(7)

    PubMed Central  Google Scholar 

  • Stockler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, Hanicke W, Frahm J (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36(3):409–413

    CAS  PubMed  Google Scholar 

  • Suh SW, Aoyama K, Matsumori Y, Liu J, Swanson RA (2005) Pyruvate administered after severe hypoglycemia reduces neuronal death and cognitive impairment. Diabetes 54(5):1452–1458

    CAS  PubMed  Google Scholar 

  • Surtees R, Blau N (2000) The neurochemistry of phenylketonuria. Eur J Pediatr 159(Suppl 2):S109–S113

    CAS  PubMed  Google Scholar 

  • Veyrat-Durebex C, Debeissat C, Blasco H, Patin F, Henique H, Emond P, Antar C, Gissot V, Herault O, Maillot F (2017) Hyperphenylalaninemia correlated with global decrease of antioxidant genes expression in White blood cells of adult patients with phenylketonuria. JIMD Rep 37:73–83

    PubMed  PubMed Central  Google Scholar 

  • Wasserstein MP, Snyderman SE, Sansaricq C, Buchsbaum MS (2006) Cerebral glucose metabolism in adults with early treated classic phenylketonuria. Mol Genet Metab 87(3):272–277

    CAS  PubMed  Google Scholar 

  • Weber G (1969) Inhibition of human brain pyruvate kinase and hexokinase by phenylalanine and phenylpyruvate: possible relevance to phenylketonuric brain damage. Proc Natl Acad Sci U S A 63(4):1365–1369

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Wegberg AMJ, MacDonald A, Ahring K, Belanger-Quintana A, Blau N, Bosch AM, Burlina A, Campistol J, Feillet F, Gizewska M, Huijbregts SC, Kearney S, Leuzzi V, Maillot F, Muntau AC, van Rijn M, Trefz F, Walter JH, van Spronsen FJ (2017) The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis 12(1):162

    PubMed  PubMed Central  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    CAS  PubMed  Google Scholar 

  • Yu YM, Kim JB, Lee KW, Kim SY, Han PL, Lee JK (2005) Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window. Stroke 36(10):2238–2243

    CAS  PubMed  Google Scholar 

  • Yuan M, McNae IW, Chen Y, Blackburn EA, Wear MA, Michels PAM, Fothergill-Gilmore LA, Hupp T, Walkinshaw MD (2018) An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor. Biochem J 475(10):1821–1837

    CAS  PubMed  Google Scholar 

  • Zhang H, Gu XF (2005) A study of gene expression profiles of cultured embryonic rat neurons induced by phenylalanine. Metab Brain Dis 20(1):61–72

    CAS  PubMed  Google Scholar 

  • Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Department of Biochemistry, and the Basic Health Sciences Institute of the Federal University of Rio Grande do Sul, especially to the people responsible for animal care. We also thank the funding agencies that supported the present study – Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP) Rede Instituto Brasileiro de Neurociência.

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP) Rede Instituto Brasileiro de Neurociência.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Trindade Bortoluzzi.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortoluzzi, V.T., Brust, L., Preissler, T. et al. Creatine plus pyruvate supplementation prevents oxidative stress and phosphotransfer network disturbances in the brain of rats subjected to chemically-induced phenylketonuria. Metab Brain Dis 34, 1649–1660 (2019). https://doi.org/10.1007/s11011-019-00472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00472-7

Keywords

Navigation