Skip to main content

Advertisement

Log in

Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motoneurons. While the principal cause of the disease remains so far unknown, the onset and progression of the pathology are increasingly associated with alterations in the control of cell metabolism. On the basis of the well-known key roles of 5′-adenosine monophosphate-activated protein kinase (AMPK) in sensing and regulating the intracellular energy status, we hypothesized that mice with a genetic deletion of AMPK would develop locomotor abnormalities that bear similarity with those detected in the very early disease stage of mice carrying the ALS-associated mutated gene hSOD1G93A. Using an automated gait analysis system (CatWalk), we here show that hSOD1G93A mice and age-matched mice lacking the neuronal and skeletal muscle predominant α2 catalytic subunit of AMPK showed an altered gait, clearly different from wild type control mice. Double mutant mice lacking AMPK α2 and carrying hSOD1G93A showed the same early gait abnormalities as hSOD1G93A mice over an age span of 8 to 16 weeks. Taken together, these data support the concept that altered AMPK function and associated bioenergetic abnormalities could constitute an important component in the early pathogenesis of ALS. Therapeutic interventions acting on metabolic pathways could prove beneficial on early locomotor deficits, which are sensitively detectable in rodent models using the CatWalk system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

AMPK:

5′-adenosine monophosphate-activated protein kinase

SOD1:

Cu-Zn superoxide dismutase 1

References

  • Batka RJ, Brown TJ, Mcmillan KP, Meadows RM, Jones KJ, Haulcomb MM (2014) The need for speed in rodent locomotion analyses. Anat Rec (Hoboken) 297:1839–1864

    Article  Google Scholar 

  • Bouteloup C, Desport JC, Clavelou P, Guy N, Derumeaux-Burel H, Ferrier A, Couratier P (2009) Hypermetabolism in ALS patients: an early and persistent phenomenon. J Neurol 256:1236–1242

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Almstrom S, Gimenez-Llort L, Chang R, Ove OS, Hoffer B, Olson L (1997) Gait analysis of adult paraplegic rats after spinal cord repair. Exp Neurol 148:544–557

    Article  CAS  PubMed  Google Scholar 

  • Chiang PM, Ling J, Jeong YH, Price DL, Aja SM, Wong PC (2010) Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc Natl Acad Sci U S A 107:16320–16324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chuang CS, Su HL, Cheng FC, Hsu SH, Chuang CF, Liu CS (2010) Quantitative evaluation of motor function before and after engraftment of dopaminergic neurons in a rat model of parkinson’s disease. J Biomed Sci 17:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Coughlan KS, Mitchem MR, Hogg MC, Prehn JH (2015) "Preconditioning" with latrepirdine, an adenosine 5’-monophosphate-activated protein kinase activator, delays amyotrophic lateral sclerosis progression in SOD1(G93A) mice. Neurobiol Aging 36:1140–1150

    Article  CAS  PubMed  Google Scholar 

  • Dai H, Macarthur L, McAtee M, Hockenbury N, Das P, Bregman BS (2011) Delayed rehabilitation with task-specific therapies improves forelimb function after a cervical spinal cord injury. Restor Neurol Neurosci 29:91–103

    PubMed  Google Scholar 

  • Deumens R, Jaken RJ, Marcus MA, Joosten EA (2007) The CatWalk gait analysis in assessment of both dynamic and static gait changes after adult rat sciatic nerve resection. J Neurosci Methods 164:120–130

    Article  PubMed  Google Scholar 

  • Deumens R, Marinangeli C, Bozkurt A, Brook GA (2014) Assessing motor outcome and functional recovery following nerve injury. Methods Mol Biol 1162:179–188

    Article  PubMed  Google Scholar 

  • Dupuis L, Corcia P, Fergani A, Gonzalez de Aguilar JL, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, Meininger V (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70:1004–1009

    Article  CAS  PubMed  Google Scholar 

  • Dupuis L, Gonzalez de Aguilar JL, Oudart H, de TM BL, Loeffler JP (2004) Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener Dis 1:245–254

    Article  PubMed  Google Scholar 

  • Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82

    Article  CAS  PubMed  Google Scholar 

  • Gerber YN, Sabourin JC, Rabano M, Vivanco M, Perrin FE (2012) Early functional deficit and microglial disturbances in a mouse model of amyotrophic lateral sclerosis. PLoS One 7:e36000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez de Aguilar JL, Niederhauser-Wiederkehr C, Halter B, de TM DSF, Demougin P, Dupuis L, Primig M, Meininger V, Loeffler JP (2008) Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiol Genomics 32:207–218

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  CAS  PubMed  Google Scholar 

  • Horman S, Beauloye C, Vanoverschelde JL, Bertrand L (2012) AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Curr Heart Fail Rep 9:164–173

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF (2004) Knockout of the alpha2 but not alpha1 5′-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem 279:1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Landree LE, Hanlon AL, Strong DW, Rumbaugh G, Miller IM, Thupari JN, Connolly EC, Huganir RL, Richardson C, Witters LA, Kuhajda FP, Ronnett GV (2004) C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism. J Biol Chem 279:3817–3827

    Article  CAS  PubMed  Google Scholar 

  • Lim MA, Selak MA, Xiang Z, Krainc D, Neve RL, Kraemer BC, Watts JL, Kalb RG (2012) Reduced activity of AMP-activated protein kinase protects against genetic models of motor neuron disease. J Neurosci 32:1123–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu YJ, Ju TC, Chen HM, Jang YS, Lee LM, Lai HL, Tai HC, Fang JM, Lin YL, Tu PH, Chern Y (2015a) Activation of AMP-activated protein kinase alpha1 mediates mislocalization of TDP-43 in amyotrophic lateral sclerosis. Hum Mol Genet 24:787–801

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Lee LM, Lai HL, Chern Y (2015b) Aberrant activation of AMP-activated protein kinase contributes to the abnormal distribution of HuR in amyotrophic lateral sclerosis. FEBS Lett 589:432–439

    Article  CAS  PubMed  Google Scholar 

  • Mancuso R, del VJ, Modol L, Martinez A, Granado-Serrano AB, Ramirez-Nunez O, Pallas M, Portero-Otin M, Osta R, Navarro X (2014) Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 11:419–432

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mancuso R, Olivan S, Osta R, Navarro X (2011) Evolution of gait abnormalities in SOD1(G93A) transgenic mice. Brain Res 1406:65–73

    Article  CAS  PubMed  Google Scholar 

  • McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV (2005) Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke. J Biol Chem 280:20493–20502

    Article  CAS  PubMed  Google Scholar 

  • Mead RJ, Bennett EJ, Kennerley AJ, Sharp P, Sunyach C, Kasher P, Berwick J, Pettmann B, Battaglia G, Azzouz M, Grierson A, Shaw PJ (2011) Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). PLoS One 6:e23244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Musi N, Hayashi T, Fujii N, Hirshman MF, Witters LA, Goodyear LJ (2001) AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 280:E677–E684

    CAS  PubMed  Google Scholar 

  • Nakano M, Hamada T, Hayashi T, Yonemitsu S, Miyamoto L, Toyoda T, Tanaka S, Masuzaki H, Ebihara K, Ogawa Y, Hosoda K, Inoue G, Yoshimasa Y, Otaka A, Fushiki T, Nakao K (2006) alpha2 isoform-specific activation of 5’adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Metabolism 55:300–308

    Article  CAS  PubMed  Google Scholar 

  • Niessen HG, Debska-Vielhaber G, Sander K, Angenstein F, Ludolph AC, Hilfert L, Willker W, Leibfritz D, Heinze HJ, Kunz WS, Vielhaber S (2007) Metabolic progression markers of neurodegeneration in the transgenic G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Eur J Neurol 25:1669–1677

    Google Scholar 

  • Oliveira AS, Pereira RD (2009) Amyotrophic lateral sclerosis (ALS): three letters that change the people’s life. For ever. Arq Neuropsiquiatr 67:750–782

    Article  PubMed  Google Scholar 

  • Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723

    Article  CAS  PubMed  Google Scholar 

  • Perera ND, Sheean RK, Scott JW, Kemp BE, Horne MK, Turner BJ (2014) Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models. PLoS One 9:e95549

  • Ramamurthy S, Ronnett GV (2006) Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J Physiol 574:85–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett PF (1999) Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J Neurochem 72:1707–1716

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte C, Taymans JM, Casteels C, Coun F, Ni Y, Van LK, Baekelandt V (2010) Automated quantitative gait analysis in animal models of movement disorders. BMC Neurosci 11:92

    Article  PubMed Central  PubMed  Google Scholar 

  • Viollet B, Andreelli F, Jorgensen SB, Perrin C, Flamez D, Mu J, Wojtaszewski JF, Schuit FC, Birnbaum M, Richter E, Burcelin R, Vaulont S (2003a) Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans 31:216–219

    Article  CAS  PubMed  Google Scholar 

  • Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S (2003b) The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 111:91–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Viollet B, Guigas B, Leclerc J, Hebrard S, Lantier L, Mounier R, Andreelli F, Foretz M (2009) AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf) 196:81–98

    Article  CAS  Google Scholar 

  • Viollet B, Mounier R, Leclerc J, Yazigi A, Foretz M, Andreelli F (2007) Targeting AMP-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders. Diabete Metab 33:395–402

    Article  CAS  PubMed  Google Scholar 

  • Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Wooley CM, Sher RB, Kale A, Frankel WN, Cox GA, Seburn KL (2005) Gait analysis detects early changes in transgenic SOD1(G93A) mice. Muscle Nerve 32:43–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wuolikainen A, Andersen PM, Moritz T, Marklund SL, Antti H (2012) ALS patients with mutations in the SOD1 gene have an unique metabolomic profile in the cerebrospinal fluid compared with ALS patients without mutations. Mol Genet Metab 105:472–478

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Sui Y, Gao W, Cai B, Fan D (2015) Effects of diet on adenosine monophosphate-activated protein kinase activity and disease progression in an amyotrophic lateral sclerosis model. J Int Med Res 43:67–79

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank R. Carvajal for her excellent technical assistance and Dr. Ronald Deumens for critical feedback on this work. This work was supported by the National Fund for Scientific Research (FNRS, Belgium, Crédit au chercheur 1.5.085.10.F and 1.A198.08), by the Association belge pour les maladies neuromusculaires (ABMM) and by a grant of Ministry of Scientific Policy (Belgium, ARC 10/15–026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Hermans.

Additional information

Maxime Vergouts and Claudia Marinangeli contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergouts, M., Marinangeli, C., Ingelbrecht, C. et al. Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease. Metab Brain Dis 30, 1369–1377 (2015). https://doi.org/10.1007/s11011-015-9706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9706-9

Keywords

Navigation