Skip to main content
Log in

The effects of lobeline and naltrexone on methamphetamine-induced place preference and striatal dopamine and serotonin levels in adolescent rats with a history of maternal separation

Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Exposure to early life stress has been suggested to increase an individual’s vulnerability to methamphetamine (MA) dependence. Although there is no cure for drug dependence, the opioid and vesicular monoamine transporter 2 (VMAT2) systems may be useful targets for treatment insofar as they play pivotal roles in the neurochemistry of addiction. Here we investigated the effects of naltrexone (opioid antagonist) and lobeline (VMAT2 inhibitor) on MA-induced place preference in adolescent rodents subjected to early life trauma (maternal separation, MS) and controls, as well as the effects on dopamine and serotonin levels in the striatum. We found: (1) maternal separation attenuated methamphetamine-induced place preference; (2) lobeline and naltrexone treatment had differential effects on serotonin and dopamine concentrations in the striatum, naltrexone increased serotonin levels in the maternally separated animals. The hypothesized effect of early adversity increasing MA-induced place preference may not be apparent in adolescence. However the data are consistent with the hypothesis that early life stress influences neurochemical pathways that predispose an individual to drug dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adriani W, Laviola G (2002) Spontaneous novelty seeking and amphetamine-induced conditioning and sensitization in adult mice: evidence of dissociation as a function of age at weaning. Neuropsychopharmacology 27:225–236. doi:10.1038/S0893-133X(02)00300-7

    Article  PubMed  CAS  Google Scholar 

  • Anggadiredja K, Sakimura K, Hiranita T, Yamamoto T (2004) Naltrexone attenuates cue- but not drug-induced methamphetamine seeking: a possible mechanism for the dissociation of primary and secondary reward. Brain Res 1021:272–276. doi:10.1016/j.brainres.2004.06.051

    Article  PubMed  CAS  Google Scholar 

  • Balcells-Olivero M, Vezina P (1997) Effects of naltrexone on amphetamine-induced locomotion and rearing: acute and repeated injections. Psychopharmacol (Berl) 131:230–238. doi:10.1007/s002130050288

    Article  CAS  Google Scholar 

  • Benwell MEM, Balfour DJK (1998) The influence of lobeline on nucleus accumbens dopamine and locomotor responses to nicotine in nicotine-pretreated rats. Br J Pharmacol 125:1115–1119. doi:10.1038/sj.bjp.0702161

    Article  PubMed  CAS  Google Scholar 

  • Bergevin A, Girardot D, Bourque MJ, Trudeau LE (2002) Presynaptic mu-opioid receptors regulate a late step of the secretory process in rat ventral tegmental area GABAergic neurons. Neuropharmacology 42:1065–1078. doi:10.1016/S0028-3908(02)00061-8

    Article  PubMed  CAS  Google Scholar 

  • Bjork JM, Smith AR, Chen G, Hommer DW (2010) Adolescents, adults and rewards: comparing motivational neurocircuitry recruitment using fMRI. PLoS One 5:e11440. doi:10.1371/journal.pone.0011440

    Article  PubMed  Google Scholar 

  • Boasen JF, McPherson RJ, Hays SL, Juul SE, Gleason CA (2009) Neonatal stress or morphine alters adult mouse conditioned place preference. Neonatology 95:230–239. doi:10.1159/000165379

    Article  PubMed  Google Scholar 

  • Brebner K, Ahn S, Phillips AG (2005) Attenuation of d-amphetamine self-administration by baclofen in the rat: behavioral and neurochemical correlates. Psychopharmacol (Berl) 177:409–417. doi:10.1007/s00213-004-1968-6

    Article  CAS  Google Scholar 

  • Brodie MS, Bunney EB (1996) Serotonin potentiates dopamine inhibition of ventral tegmental area neurons in vitro. J Neurophysiol 76:2077–2082

    PubMed  CAS  Google Scholar 

  • Chiu CT, Ma T, Ho IK (2005) Attenuation of methamphetamine-induced behavioral sensitization in mice by systemic administration of naltrexone. Brain Res Bull 67:100–109. doi:10.1016/j.brainresbull.2005.05.028

    Article  PubMed  CAS  Google Scholar 

  • Chiu CT, Ma T, Ho IK (2006) Methamphetamine-induced behavioral sensitization in mice: alterations in μ-opioid receptor. J Biomed Sci 13:797–811. doi:10.1007/s11373-006-9102-x

    Article  PubMed  CAS  Google Scholar 

  • Di Chara G, North AR (1992) Neurobiology of opiate abuse. Trends Pharmacol Sci 13:185–193

    Article  Google Scholar 

  • Di Matteo V, De Blasi A, Di Giulio C, Esposito E (2001) Role of 5-HT(2C) receptors in the control of central dopamine function. Trends Pharmacol Sci 22:229–232. doi:10.1016/S0165-6147(00)01688-6

    Article  PubMed  Google Scholar 

  • Dinwiddie SH, Reich T, Cloninger CR (1992) Prediction of intravenous drug use. Compr Psychiatry 33:173–179. doi:10.1016/0010-440X(92)90026-M

    Article  PubMed  CAS  Google Scholar 

  • Dwoskin LP, Crooks PA (2002) A novel mechanism of action and potential use for lobeline as a treatment for psychostimulant abuse. Biochem Pharmacol 63:89–98. doi:10.1016/S0006-2952(01)00899-1

    Article  PubMed  CAS  Google Scholar 

  • Ettenberg A, Pettit HO, Bloom FE, Koob GF (1982) Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacol (Berl) 78:204–209

    Article  CAS  Google Scholar 

  • Eyerman DJ, Yamamoto BK (2005) Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. J Pharmacol Exp Ther 312:160–169. doi:10.1124/jpet.104.072264

    Article  PubMed  CAS  Google Scholar 

  • Gawin FH (1991) Cocaine addiction: psychology and neurophysiology. Science 251:1580–1586. doi:10.1126/science.2011738

    Article  PubMed  CAS  Google Scholar 

  • Gordon HW (2002) Early environmental stress and biological vulnerability to drug abuse. Psychoneuroendocrinology 27:115–126. doi:10.1016/S0306-4530(01)00039-7

    Article  PubMed  Google Scholar 

  • Gutierres SE, Molof M, Ungerleider S (1994) Relationship of “risk” factors to teen substance use: a comparison of abstainers, infrequent users, and frequent users. Int J Addict 12:1047–1056

    Google Scholar 

  • Häggkvist J, Lindholm S, Franck J (2009) The opioid receptor antagonist naltrexone attenuates reinstatement of amphetamine drug-seeking in the rat. Behav Brain Res 197:219–224. doi:10.1016/j.bbr.2008.08.021

    Article  PubMed  Google Scholar 

  • Häggkvist J, Björkholm C, Steensland P, Lindholm S, Franck J, Schilström B (2011) Naltrexone attenuates amphetamine-induced lcomotor sensitization in the rat. Addict Biol 16:20–29. doi:10.1111/j.1369-1600.2009.00199.x

    Article  PubMed  Google Scholar 

  • Harrigan SE, Downs DA (1978) Continuous intravenous naltrexone effects on morphine self-administration in rhesus monkeys. J Pharmacol Exp Ther 204:481–485

    PubMed  CAS  Google Scholar 

  • Harrod SB, Dwoskin LP, Crooks PA, Klebaur JE, Bardo MT (2001) α-Lobeline attenuates D-methamphetamine self-administration in rats. J Pharmacol Exp Ther 298:172–179

    PubMed  CAS  Google Scholar 

  • Harrod SB, Dwoskin LP, Green TA, Gehrke BJ, Bardo MT (2003) Lobeline does not serve as a reinforcer in rats. Psychopharmacol (Berl) 165:397–404. doi:10.1007/s00213-002-1289-6

    CAS  Google Scholar 

  • Hays SL, McPherson RJ, Juul SE, Wallace G, Schindler AG, Chavkin C, Gleason CA (2012) Long-term effects of neonatal stress on adult conditioned place preference (CPP) on hippocampal neurogenesis. Behav Brain Res 227:7–11. doi:10.1016/j.bbr.2011.10.033

    Article  PubMed  Google Scholar 

  • Hemby SE, Smith JE, Dworkin SI (1996) The effects of eticlopride and naltrexone on responding maintained by food, cocaine, heroin and cocaine/heroin combinations in rats. J Pharmacol Exp Ther 277:1247–1258

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1990) Discriminative stimulus effects of drugs: relationship to potential for abuse. In: Adler MW, Cowan A (eds) Testing and evaluation of drugs of abuse, modern methods in pharmacology. Wiley-Liss, New York, pp 193–210

    Google Scholar 

  • Hooks MS, Jones DN, Justice JB Jr, Holtzman SG (1992) Naloxone reduces amphetamine-induced stimulation of locomotor activity and in vivo dopamine release in the striatum and nucleus accumbens. Pharmacol Biochem Behav 42:765–770

    Article  PubMed  CAS  Google Scholar 

  • Hubner CB, Bain GT, Kornetsky C (1987) The combined effects of morphine and D-amphetamine on the threshold for brain stimulation reward. Pharmacol Biochem Behav 28:311–315. doi:10.1016/0091-3057(87)90230-9

    Article  PubMed  CAS  Google Scholar 

  • Huot RL, Plotsky PM, Lenox RH, McNamara RK (2002) Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats. Brain Res 950:52–63

    Article  PubMed  CAS  Google Scholar 

  • Infurna RN, Spear LP (1979) Developmental changes in amphetamine-induced taste aversions. Pharmacol Biochem Behav 11:31–35

    Article  PubMed  CAS  Google Scholar 

  • Ivy AS, Rex CS, Chen Y, Dubé C, Maras PM, Grigoriadis DE, Gall CM, Lynch G, Baram TZ (2010) Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J Neurosci 30:13005–13015. doi:10.1523/JNEUROSCI.1784-10.2010

    Article  PubMed  CAS  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Rev 16:223–244

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter KA, Kantak KM (2007) Differential effects of self-administered cocaine in adolescent and adult rats on stimulus-reward learning. Psychopharmacology 194:403–411. doi:10.1007/s00213-007-0852-6

    Article  PubMed  CAS  Google Scholar 

  • Kilbourn M, Lee L, Borght TV, Jewett D, Frey K (1995) Binding of α-dihydrotetrabenazine to the vesicular monoamine transporter is stereoselective. Eur J Pharmacol 278:249–252. doi:10.1016/0014-2999(95)00162-E

    Article  PubMed  CAS  Google Scholar 

  • Korosi A, Naninck EFG, Oomen CA, Schouten M, Krugers H, Fitzsimons C, Lucassen PJ (2012) Early-life stress mediated modulation of adult neurogenesis and behaviour. Behav Brain Res 227:400–409. doi:10.1016/j.bbr.2011.07.037

    Article  PubMed  CAS  Google Scholar 

  • Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Meaney MJ, Plotsky PM (2000) Long-term behavioural and neuroendorine adaptations to adverse early experience. In: Mayer EA, Saper CB (eds) Progress in brain research: the biological basis for mind body interactions. Elsevier, Amsterdam, pp 81–103

    Google Scholar 

  • Laviola G, Adriani W, Terranova ML, Gerra G (1999) Psychobiological risk factors for vulnerability to psychostimulants in human adolescents and animal models. Neurosci Biobehav Rev 23:993–1010. doi:10.1016/S0149-7634(99)00032-9

    Article  PubMed  CAS  Google Scholar 

  • Lecca D, Shim I, Costa E, Javaid JI (2000) Striatal application of nicotine, but not of lobeline, attenuates dopamine release in freely moving rats. Neuropharmacology 39:88–98. doi:10.1016/S0028-3908(99)00085-4

    Article  PubMed  CAS  Google Scholar 

  • Lendvai B, Sershen H, Lajtha A, Santha E, Baranyi M, Vizi ES (1996) Differential mechanisms involved in the effect of nicotinic agonists DMPP and lobeline to release [3H]5-HT from rat hippocampal slices. Neuropharmacology 35:1769–1777. doi:10.1016/S0028-3908(96)00115-3

    Article  PubMed  CAS  Google Scholar 

  • Leone P, Poddock D, Wise RA (1991) Morphine-dopamine interaction: ventral tegmental morphine increases nucleus accumbens dopamine release. Pharmacol Biochem Behav 39:469–472. doi:10.1016/0091-3057(91)90210-S

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Peter D, Merickel A, Krantz D, Finn PJ, Edwards RH (1996) A molecular analysis of vesicular amine transporter. Behav Brain Res 73:51–58

    Article  PubMed  CAS  Google Scholar 

  • Matthews K, Robbins TW (2003) Early experience as a determinant of adult behavioural responses to reward: the effects of repeated maternal separation in the rat. Neurosci Biobehav Rev 27:45–55. doi:10.1016/S0149-7634(03)00008-3

    Article  PubMed  Google Scholar 

  • Meaney MJ, Brake W, Gratton A (2002) Environmental regulation of the development of mesolimbic dopamine systems: a neurobiological mechanism for vulnerability to drug abuse? Psychoneuroendocrinology 27:127–138. doi:10.1016/S0306-4530(01)00040-3

    Article  PubMed  CAS  Google Scholar 

  • Miller DK, Crooks PA, Dwoskin LP (2000) Lobeline inhibits nicotine-evoked [3H]dopamine overflow from rat striatal slices and nicotine-evoked 86Rb+ efflux from thalamic synaptosomes. Neuropharmacology 39:2654–2662. doi:10.1016/S0028-3908(00)00140-4

    Article  PubMed  CAS  Google Scholar 

  • Miller DK, Crooks PA, Teng L, Witkin JM, Munzar P, Goldberg SR, Acri JB, Dwoskin LP (2001) Lobeline inhibits the neurochemical and behavioral effects of amphetamine. J Pharmacol Exp Ther 296:1023–1034

    PubMed  CAS  Google Scholar 

  • Negus SS, Mello NK, Portoghese PS, Lukas SE, Mendelson JH (1995) Role of δ-opioid receptors in the reinforcing and discriminative stimulus effects of cocaine in rhesus monkeys. J Pharmacol Exp Ther 273:1245–1256

    PubMed  CAS  Google Scholar 

  • Olive MF, Koenig HN, Nannini MA, Hodge CW (2001) Stimulation of endorphin neurotransmission in the nucleus accumbens by ethanol, cocaine and amphetamine. J Neurosci 21:RC184

    PubMed  CAS  Google Scholar 

  • Pifl C, Drobny H, Reither H, Hornykiewicz O, Singer EA (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47:368–373

    PubMed  CAS  Google Scholar 

  • Rada P, Mark GP, Pothos E, Hoebel BG (1991) Systemic morphine simultaneously decreases extracellular acetylcholine and increases dopamine in the nucleus accumbens of freely moving rats. Neuropharmacology 30:1133–1136

    Article  PubMed  CAS  Google Scholar 

  • Ramsey NF, Van Ree JM (1990) Chronic pretreatment with naltrexone facilitates acquisition of intravenous cocaine self-administration in rats. Eur Neuropsychopharmacol 1:55–61

    Article  PubMed  CAS  Google Scholar 

  • Schad CA, Justice JB, Holtzman SG (1995) Naloxone reduces the neurochemical and behavioral effects of amphetamine but not those of cocaine. Eur J Pharmacol 275:9–16. doi:10.1016/0014-2999(94)00726-N

    Article  PubMed  CAS  Google Scholar 

  • Schad CA, Justice JB Jr, Holtzman SG (1996) Differential effects of delta- and mu-opioid receptor antagonists on the amphetamine-induced increase in extracellular dopamine in striatum and nucleus accumbens. J Neurochem 67:2292–2299. doi:10.1046/j.1471-4159.1996.67062292.x

    Article  PubMed  CAS  Google Scholar 

  • Scherman D, Boschi G, Rips R, Henry JP (1986) The regionalization of [3H]dihydrotetrabenazine binding sites in the mouse brain and its relationship to the distribution of monoamines and their metabolites. Brain Res 370:176–181. doi:10.1016/0006-8993(86)91120-0

    Article  PubMed  CAS  Google Scholar 

  • Schuster CR, Johanson CE (1988) Relationship between the discriminative stimulus properties and subjective effects of drugs. In: Colpaert FC, Balster RL (eds) Psychopharmacology, Series 4: transduction mechanisms of drug stimuli. Springer, Berlin, pp 161–175

    Google Scholar 

  • Shimosato K, Ohkuma S (2000) Simultaneous monitoring of conditioned place preference and locomotor sensitization following repeated administration of cocaine and methamphetamine. Pharmacol Biochem Behav 66:285–292. doi:10.1016/S0091-3057(00)00185-4

    Article  PubMed  CAS  Google Scholar 

  • Sinha R (2001) How does stress increase risk of drug abuse and relapse? Psychopharmacol (Berl) 158:343–359. doi:10.1007/s002130100917

    Article  CAS  Google Scholar 

  • Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22:521–527. doi:10.1016/S0166-2236(99)01447-2

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 2046–2050

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417–463. doi:10.1016/S0149-7634(00)00014-2

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Garcia HS, Mirza NR (1995) Dissociation between locomotor stimulant and depressant effects of nicotine agonists in rats. Psychopharmacol (Berl) 117:430–437

    Article  CAS  Google Scholar 

  • Sulzer D, Rayport S (1990) Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron 5:797–808. doi:10.1016/0896-6273(90)90339-H

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamine: a review. Prog Neurobiol 75:406–433. doi:10.1016/j.pneurobio.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  • Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, Jackson-Lewis V, Przedborski S, Uhl GR (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94:9938–9943

    Article  PubMed  CAS  Google Scholar 

  • Tatsuta T, Kitanaka N, Kitanaka J, Morita Y, Takemura M (2006) Lobeline attenuates methamphetamine-induced stereotypy in adolescent mice. Neurochem Res 31:1359–1369. doi:10.1007/s11064-006-9180-1

    Article  PubMed  CAS  Google Scholar 

  • Teng LH, Crooks PA, Sonsalla PK, Dwoskin LP (1997) Lobeline and nicotine evoke [3H]overflow from rat striatal slices preloaded with [3H]dopamine: differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. J Pharmacol Exp Ther 280:1432–1444

    PubMed  CAS  Google Scholar 

  • Terry AV, Williamson R, Gattu M, Beach JW, McCurdy CR, Sparks JA, Pauly JR (1998) Lobeline and structurally simplified analogs exhibit differential agonist activity and sensitivity to antagonist blockade when compared to nicotine. Neuropharmacology 37:93–102. doi:10.1016/S0028-3908(97)00142-1

    Article  PubMed  CAS  Google Scholar 

  • Tirelli E, Laviola G, Adriani W (2003) Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neurosci Biobehav Rev 27:163–178. doi:10.1016/s0149-7634(03)00018-6

    Article  PubMed  Google Scholar 

  • United Nations Office on Drugs and Crime (2003) Ecstasy and amphetamines, Global Survey 2003. United Nations, New York

    Google Scholar 

  • Uwai K, Uchiyama H, Sakurada S, Kabuto C, Takeshita M (2004) Syntheses and receptor-binding studies of derivatives of the opioid antagonist naltrexone. Bioorg Med Chem 12:417–421. doi:10.1016/j.bmc.2003.10.039

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm CJ, Johnson RA, Lysko PG, Eshleman AJ, Janowsky A (2004) Effects of methamphetamine and lobeline on vesicular monoamine and dopamine transporter-mediated dopamine release in a cotransfected model system. J Pharmacol Exp Ther 310:1142–1151. doi:10.1124/jpet.104.067314

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm CJ, Johnson RA, Eshleman AJ, Janowsky A (2008) Lobeline effects on tonic and methamphetamine-induced dopamine release. Biochem Pharmacol 75:1411–1415. doi:10.1016/j.bcp.2007.11.019

    Article  PubMed  CAS  Google Scholar 

  • Winger G, Skjoldager P, Woods JH (1992) Effects of buprenorphine and other opioid agonists and antagonists on alfentanil- and cocaine-reinforced responding in rhesus monkeys. J Pharmacol Exp Ther 261:311–317

    PubMed  CAS  Google Scholar 

  • Winslow JT, Miczek KA (1988) Naltrexone blocks amphetamine-induced hyperactivity, but not disruption of social and agonistic behavior in mice and squirrel monkeys. Psychopharmacol (Berl) 96:493–499

    Article  CAS  Google Scholar 

  • Yu L, Kuo YM, Cherng CFG (2001) Opioid peptides alleviate while naloxone potentiated methamphetamine-induced striatal dopamine depletion in mice. J Neural Transm 108:1231–1237. doi:10.1007/s007020100001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council (MRC) of South Africa.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Dimatelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimatelis, J.J., Russell, V.A., Stein, D.J. et al. The effects of lobeline and naltrexone on methamphetamine-induced place preference and striatal dopamine and serotonin levels in adolescent rats with a history of maternal separation. Metab Brain Dis 27, 351–361 (2012). https://doi.org/10.1007/s11011-012-9288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-012-9288-8

Keywords

Navigation