Skip to main content

Advertisement

Log in

The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

NLRX1, the mitochondrial NOD-like receptor (NLR), modulates apoptosis in response to both intrinsic and extrinsic cues. Insights into the mechanism of how NLRX1 influences apoptosis remain to be determined. Here, we demonstrate that NLRX1 associates with SARM1, a protein with a toll/interleukin-1 receptor (TIR)-containing domain also found in adaptor proteins downstream of toll-like receptors, such as MyD88. While a direct role of SARM1 in innate immunity is unclear, the protein plays essential roles in Wallerian degeneration (WD), a type of neuronal catabolism occurring following axonal severing or damage. In non-neuronal cells, we found that endogenous SARM1 was equally distributed in the cytosol and the mitochondrial matrix, where association with NLRX1 occurred. In these cells, the apoptotic role of NLRX1 was fully dependent on SARM1, indicating that SARM1 was downstream of NLRX1 in apoptosis regulation. In primary murine neurons, however, Wallerian degeneration induced by vinblastine or NGF deprivation occurred in SARM1- yet NLRX1-independent manner, suggesting that WD requires the cytosolic pool of SARM1 or that NLRX1 levels in neurons are too low to contribute to WD regulation. Together, these results shed new light into the mechanisms through which NLRX1 controls apoptosis and provides evidence of a new link between NLR and TIR-containing proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Kanneganti TD, Lamkanfi M, Núñez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27(4):549–559

    Article  CAS  PubMed  Google Scholar 

  2. Tattoli I, Carneiro LA, Jéhanno M, Magalhaes JG, Shu Y, Philpott DJ et al (2008) NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9(3):293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo H, König R, Deng M, Riess M, Mo J, Zhang L et al (2016) NLRX1 sequesters STING to negatively regulate the interferon response, thereby facilitating the replication of HIV-1 and DNA viruses. Cell Host Microbe 19(4):515–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE (2009) An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci 122(Pt 17):3161–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rebsamen M, Vazquez J, Tardivel A, Guarda G, Curran J, Tschopp J (2011) NLRX1/NOD5 deficiency does not affect MAVS signalling. Cell Death Differ 18(8):1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sasaki O, Yoshizumi T, Kuboyama M, Ishihara T, Suzuki E, Kawabata S et al (2013) A structural perspective of the MAVS-regulatory mechanism on the mitochondrial outer membrane using bioluminescence resonance energy transfer. Biochim Biophys Acta 1833(5):1017–1027

    Article  CAS  PubMed  Google Scholar 

  7. Stokman G, Kors L, Bakker PJ, Rampanelli E, Claessen N, Teske GJD et al (2017) NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J Exp Med 214(8):2405–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Soares F, Tattoli I, Rahman MA, Robertson SJ, Belcheva A, Liu D et al (2014) The mitochondrial protein NLRX1 controls the balance between extrinsic and intrinsic apoptosis. J Biol Chem 289(28):19317–19330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG et al (2008) NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451(7178):573–577

    Article  CAS  PubMed  Google Scholar 

  10. Singh K, Poteryakhina A, Zheltukhin A, Bhatelia K, Prajapati P, Sripada L et al (2015) NLRX1 acts as tumor suppressor by regulating TNF-α induced apoptosis and metabolism in cancer cells. Biochim Biophys Acta 1853(5):1073–1086

    Article  CAS  PubMed  Google Scholar 

  11. Koblansky AA, Truax AD, Liu R, Montgomery SA, Ding S, Wilson JE et al (2016) The innate immune receptor NLRX1 functions as a tumor suppressor by reducing colon tumorigenesis and key tumor-promoting signals. Cell Rep 14(11):2562–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tattoli I, Killackey SA, Foerster EG, Molinaro R, Maisonneuve C, Rahman MA et al (2016) NLRX1 acts as an epithelial-intrinsic tumor suppressor through the modulation of TNF-mediated proliferation. Cell Rep 14(11):2576–2586

    Article  CAS  PubMed  Google Scholar 

  13. Imbeault E, Mahvelati TM, Braun R, Gris P, Gris D (2014) NLRX1 regulates neuronal cell death. Mol Brain 7:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim Y, Zhou P, Qian L, Chuang JZ, Lee J, Li C et al (2007) MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med 204(9):2063–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH et al (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337(6093):481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gerdts J, Summers DW, Sasaki Y, DiAntonio A, Milbrandt J (2013) SARM1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33(33):13569–13580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mukherjee P, Woods TA, Moore RA, Peterson KE (2013) Activation of the innate signaling molecule MAVS by bunyavirus infection upregulates the adaptor protein SARM1, leading to neuronal death. Immunity 38(4):705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Panneerselvam P, Singh LP, Selvarajan V, Chng WJ, Ng SB, Tan NS et al (2013) T-cell death following immune activation is mediated by mitochondria-localized SARM. Cell Death Differ 20(3):478–489

    Article  CAS  PubMed  Google Scholar 

  19. Summers DW, DiAntonio A, Milbrandt J (2014) Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. J Neurosci 34(28):9338–9350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mukherjee P, Winkler CW, Taylor KG, Woods TA, Nair V, Khan BA et al (2015) SARM1, not MyD88, mediates TLR7/TLR9-induced apoptosis in neurons. J Immunol 195(10):4913–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Belinda LW, Wei WX, Hanh BT, Lei LX, Bow H, Ling DJ (2008) SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human. Mol Immunol 45(6):1732–1742

    Article  CAS  PubMed  Google Scholar 

  22. Carlsson E, Ding JL, Byrne B (2016) SARM modulates MyD88-mediated TLR activation through BB-loop dependent TIR-TIR interactions. Biochim Biophys Acta 1863(2):244–253

    Article  CAS  PubMed  Google Scholar 

  23. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364

    Article  CAS  PubMed  Google Scholar 

  24. Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J (2017) The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD. Neuron 93(6):1334–1343.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Panneerselvam P, Singh LP, Ho B, Chen J, Ding JL (2012) Targeting of pro-apoptotic TLR adaptor SARM to mitochondria: definition of the critical region and residues in the signal sequence. Biochem J 442(2):263–271

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Wang L, Berman M, Kong YY, Dorf ME (2011) Mapping a dynamic innate immunity protein ion network regulating type I interferon production. Immunity 35(3):426–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loreto A, Di Stefano M, Gering M, Conforti L (2015) Wallerian degeneration is executed by an NMN-SARM1-dependent late Ca(2+) influx but only modestly influenced by mitochondria. Cell Rep 13(11):2539–2552

    Article  CAS  PubMed  Google Scholar 

  28. Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139(Pt 12):3092–3108

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J (2015) SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348(6233):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gilley J, Ribchester RR, Coleman MP (2017) SARM1 deletion, but not Wld. Cell Rep 21(1):10–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. VanLinden MR, Dölle C, Pettersen IK, Kulikova VA, Niere M, Agrimi G et al (2015) Subcellular distribution of NAD+ between cytosol and mitochondria determines the metabolic profile of human cells. J Biol Chem 290(46):27644–27659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Summers DW, Gibson DA, DiAntonio A, Milbrandt J (2016) SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc Natl Acad Sci USA 113(41):E6271–E6280

    Article  CAS  PubMed  Google Scholar 

  33. Ng A, Xavier RJ (2011) Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity. Autophagy 7(9):1082–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from Canadian Institutes of Health Research (CIHR) and Natural Sciences and Engineering Research Council of Canada (NSERC) to SEG and the CIHR Vanier Canada Graduate Scholarship to SAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. Girardin.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource Fig. 1

Anti-SARM1 antibody labels numerous non-specific bands. a, Immunoblot of whole brain extracts taken from P0-4 pups of WT and Sarm1−/−. b, Immunoblot of cytosolic and mitochondrial fractions from WT or SARM1−/− CRISPR cells. Blots were stained with either antibodies from GeneTex (left) or Cell Signaling Technology (right) (PPTX 377 KB)

Online Resource Fig. 2

Validation of cell death induction following apoptotic treatments. TNF-α (10 ng/mL) + CHX (10 µg/mL) for 6 h or A23187 (0.625, 1.25, 2.5 µM) for 20 h (PPTX 108 KB)

Online Resource Fig. 3

Validation of SARM1 knockdown using shRNA. Arrow designates SARM1 band at approximately 73 kDa (PPTX 80 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Killackey, S.A., Rahman, M.A., Soares, F. et al. The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem 453, 187–196 (2019). https://doi.org/10.1007/s11010-018-3444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3444-3

Keywords

Navigation