Skip to main content
Log in

The effect of estradiol, testosterone, and human chorionic gonadotropin on the proliferation of Schwann cells with NF1 +/− or NF1 −/− genotype derived from human cutaneous neurofibromas

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Dermal neurofibromas are the hallmarks of neurofibromatosis type 1 (NF1). Neurofibromas harbor Schwann cells with two different genotypes: Schwann cells which carry the germline mutation and a healthy NF1 allele (NF1 +/−), and a subpopulation of Schwann cells which harbor the so-called second hit leading to inactivation of both NF1 alleles (NF1 −/−). The second hit in the NF1 gene of Schwann cells is considered to be the initial step in the development of neurofibromas. Dermal neurofibromas typically start to grow in puberty, and their number and size increase during pregnancy, indicating hormone responsiveness. This is the first study to address the effect of human chorionic gonadotropin (hCG) on the proliferation of human NF1 +/− and NF1 −/− Schwann cells in vitro. In addition, the effects of estradiol and testosterone were also investigated. The results showed that NF1 −/− Schwann cells were more sensitive to estradiol, testosterone, and human chorionic gonadotropin than NF1 +/− cells. Specifically, the proliferation of NF1 −/− Schwann cells was increased by up to 99, 110, and 170% compared to vehicle control when treated with estradiol, testosterone, and hCG, respectively. Interestingly, no effect of estradiol, testosterone, or hCG on the proliferation of the cells with NF1 +/− genotype was observed. To conclude, the somatic second hit in the NF1 gene sensitizes Schwann cells to sex hormones resulting in a highly increased proliferation. Our results highlight the significance of sex hormones in the regulation of neurofibroma growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NF1:

Neurofibromatosis type 1

NF1 :

Human NF1 gene

NF1 +/− :

Cells carrying the constitutional NF1 mutation only

NF1 −/− :

Cells with the NF1 second hit

NIH:

National Institutes of Health

MPNST:

Malignant peripheral nerve sheath tumor

hCG:

Human chorionic gonadotropin

FBS:

Fetal bovine serum

References

  1. Uusitalo E, Leppävirta J, Koffert A, Suominen S, Vahtera J, Vahlberg T, Pöyhönen M, Peltonen J, Peltonen S (2015) Incidence and mortality of neurofibromatosis: a total population study in Finland. J Invest Dermatol 135:904–906. https://doi.org/10.1038/jid.2014.465

    Article  PubMed  CAS  Google Scholar 

  2. Jouhilahti EM, Peltonen S, Heape AM, Peltonen J (2011) The pathoetiology of neurofibromatosis 1. Am J Pathol 178:1932–1939. https://doi.org/10.1016/j.ajpath.2010.12.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ (2017) Neurofibromatosis type 1. Nat Rev Dis Primers 3:17004. https://doi.org/10.1038/nrdp.2017.4

    Article  PubMed  Google Scholar 

  4. Riccardi VM (1992) Neurofibromatosis: phenotype, natural history and pathogenesis. The John Hopkins University Press, Baltimore, pp 1–85

    Google Scholar 

  5. Kodra Y, Giustini S, Divona L, Porciello R, Calvieri S, Wolkenstein P, Taruscio D (2009) Health-related quality of life in patients with neurofibromatosis type 1. A survey of 129 Italian patients. Dermatology 218:215–220. https://doi.org/10.1159/000187594

    Article  PubMed  Google Scholar 

  6. Peltonen J, Jaakkola S, Lebwohl M, Renvall S, Risteli L, Virtanen I, Uitto J (1988) Cellular differentiation and expression of matrix genes in type 1 neurofibromatosis. Lab Invest 59:760–771

    PubMed  CAS  Google Scholar 

  7. Serra E, Rosenbaum T, Winner U, Aledo R, Ars E, Estivill X, Lenard HG, Lázaro C (2000) Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Hum Mol Genet 9:3055–3064

    Article  PubMed  CAS  Google Scholar 

  8. Jouhilahti EM, Peltonen S, Callens T, Jokinen E, Heape AM, Messiaen L, Peltonen J (2011) The development of cutaneous neurofibromas. Am J Pathol 178:500–505. https://doi.org/10.1016/j.ajpath.2010.10.041

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhu Y, Ghosh P, Charnay P, Burns DK, Parada LF (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296:920–922. https://doi.org/10.1126/science.1068452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dugoff L, Sujansky E (1996) Neurofibromatosis type 1 and pregnancy. Am J Med Genet 66:7–10

    Article  PubMed  CAS  Google Scholar 

  11. Roth TM, Petty EM, Barald KF (2008) The role of steroid hormones in the NF1 phenotype: focus on pregnancy. Am J Med Genet A 146A:1624–1633. https://doi.org/10.1002/ajmg.a.32301

    Article  PubMed  CAS  Google Scholar 

  12. Posma E, Aalbers R, Kurniawan YS, van Essen AJ, Peeters PM, van Loon AJ (2003) Neurofibromatosis type I and pregnancy: a fatal attraction? Development of malignant schwannoma during pregnancy in a patient with neurofibromatosis type I. BJOG 110:530–532

    PubMed  CAS  Google Scholar 

  13. Xiong M, Gilchrest BA, Obayan OK (2015) Eruptive neurofibromas in pregnancy. JAAD Case Rep 1:23–24. https://doi.org/10.1016/j.jdcr.2014.10.006

    Article  PubMed  Google Scholar 

  14. Jung-Testas I, Schumacher M, Bugnard H, Baulieu EE (1993) Stimulation of rat Schwann cell proliferation by estradiol: synergism between the estrogen and cAMP. Brain Res Dev Brain Res 72:282–290

    Article  PubMed  CAS  Google Scholar 

  15. Jung-Testas I, Schumacher M, Robel P, Baulieu EE (1996) Demonstration of progesterone receptors in rat Schwann cells. J Steroid Biochem Mol Biol 58:77–82

    Article  PubMed  CAS  Google Scholar 

  16. McLaughlin ME, Jacks T (2003) Progesterone receptor expression in neurofibromas. Cancer Res 63:752–755

    PubMed  CAS  Google Scholar 

  17. Fishbein L, Zhang X, Fisher LB, Li H, Campbell-Thompson M, Yachnis A, Rubenstein A, Muir D, Wallace MR (2007) In vitro studies of steroid hormones in neurofibromatosis 1 tumors and Schwann cells. Mol Carcinog 46:512–523. https://doi.org/10.1002/mc.20236

    Article  PubMed  CAS  Google Scholar 

  18. Overdiek A, Winner U, Mayatepek E, Rosenbaum T (2008) Schwann cells from human neurofibromas show increased proliferation rates under the influence of progesterone. Pediatr Res 64:40–43. https://doi.org/10.1203/PDR.0b013e31817445b8

    Article  PubMed  CAS  Google Scholar 

  19. Siriphorn A, Chompoopong S, Floyd CL (2010) 17β-estradiol protects Schwann cells against H2O2-induced cytotoxicity and increases transplanted Schwann cell survival in a cervical hemicontusion spinal cord injury model. J Neurochem 115:864–872. https://doi.org/10.1111/j.1471-4159.2010.06770.x

    Article  PubMed  CAS  Google Scholar 

  20. Chen Y, Guo W, Xu L, Li W, Cheng M, Hu Y, Xu W (2016) 17β-Estradiol promotes schwann cell proliferation and differentiation, accelerating early remyelination in a mouse peripheral nerve injury model. Biomed Res Int 2016:7891202 https://doi.org/10.1155/2016/7891202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Uusitalo E, Rantanen M, Kallionpää RA, Pöyhönen M, Leppävirta J, Ylä-Outinen H, Riccardi VM, Pukkala E, Pitkäniemi J, Peltonen S, Peltonen J (2016) Distinctive cancer associations in patients with neurofibromatosis type 1. J Clin Oncol. https://doi.org/10.1200/JCO.2015.65.3576

    Article  PubMed  Google Scholar 

  22. Ingham S, Huson SM, Moran A, Wylie J, Leahy M, Evans DG (2011) Malignant peripheral nerve sheath tumours in NF1: improved survival in women and in recent years. Eur J Cancer 47:2723–2728. https://doi.org/10.1016/j.ejca.2011.05.031

    Article  PubMed  Google Scholar 

  23. Perrin GQ, Li H, Fishbein L, Thomson SA, Hwang MS, Scarborough MT, Yachnis AT, Wallace MR, Mareci TH, Muir D (2007) An orthotopic xenograft model of intraneural NF1 MPNST suggests a potential association between steroid hormones and tumor cell proliferation. Lab Invest 87:1092–1102. https://doi.org/10.1038/labinvest.3700675

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Zhang X, Fishbein L, Kweh F, Campbell-Thompson M, Perrin GQ, Muir D, Wallace M (2010) Analysis of steroid hormone effects on xenografted human NF1 tumor schwann cells. Cancer Biol Ther 10:758–764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. O’Malley BW, Tsai MJ (1992) Molecular pathways of steroid receptor action. Biol Reprod 46:163–167

    Article  PubMed  Google Scholar 

  26. McFarland KC, Sprengel R, Phillips HS, Köhler M, Rosemblit N, Nikolics K, Segaloff DL, Seeburg PH (1989) Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science 245:494–499

    Article  PubMed  CAS  Google Scholar 

  27. Rosenbaum T, Rosenbaum C, Winner U, Müller HW, Lenard HG, Hanemann CO (2000) Long-term culture and characterization of human neurofibroma-derived Schwann cells. J Neurosci Res 61:524–532

    Article  PubMed  CAS  Google Scholar 

  28. Maertens O, Brems H, Vandesompele J, De Raedt T, Heyns I, Rosenbaum T, De Schepper S, De Paepe A, Mortier G, Janssens S, Speleman F, Legius E, Messiaen L (2006) Comprehensive NF1 screening on cultured Schwann cells from neurofibromas. Hum Mutat 27:1030–1040. https://doi.org/10.1002/humu.20389

    Article  PubMed  CAS  Google Scholar 

  29. Stumpf DA, Alksne JF, Annegers JF, Brown SS, Conneally PM, Housman D, Leppert MF, Miller JP, Moss ML, Pileggi AJ, Rapin I, Strohman RC, Swanson LW, Zimmerman A (1988) Neurofibromatosis conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 45:575–578

    Article  Google Scholar 

  30. Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci USA 76:514–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Driggers PH, Segars JH (2002) Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol Metab 13:422–427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Liao RS, Ma S, Miao L, Li R, Yin Y, Raj GV (2013) Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation. Transl Androl Urol 2:187–196. https://doi.org/10.3978/j.issn.2223-4683.2013.09.07

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fan HY, Shimada M, Liu Z, Cahill N, Noma N, Wu Y, Gossen J, Richards JS (2008) Selective expression of KrasG12D in granulosa cells of the mouse ovary causes defects in follicle development and ovulation. Development 135:2127–2137. https://doi.org/10.1242/dev.020560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. DeBella K, Szudek J, Friedman JM (2000) Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics 105:608–614

    Article  PubMed  CAS  Google Scholar 

  35. Duong TA, Bastuji-Garin S, Valeyrie-Allanore L, Sbidian E, Ferkal S, Wolkenstein P (2011) Evolving pattern with age of cutaneous signs in neurofibromatosis type 1: a cross-sectional study of 728 patients. Dermatology 222:269–273. https://doi.org/10.1159/000327379

    Article  PubMed  CAS  Google Scholar 

  36. Lammert M, Mautner VF, Kluwe L (2005) Do hormonal contraceptives stimulate growth of neurofibromas? A survey on 59 NF1 patients. BMC Cancer 5:16. https://doi.org/10.1186/1471-2407-5-16

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 83:2496–2500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Welshons WV, Wolf MF, Murphy CS, Jordan VC (1988) Estrogenic activity of phenol red. Mol Cell Endocrinol 57:169–178

    Article  PubMed  CAS  Google Scholar 

  39. Seamon KB, Daly JW (1981) Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res 7:201–224

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mr. Miso Immonen for technical support. This work was supported by The Turku University Foundation and The Jalmari and Rauha Ahokas Foundation.

Data availability

Raw data is available on request.

Author information

Authors and Affiliations

Authors

Contributions

JP conceived the study. JP and SP made a significant contribution to writing the paper. SP collected the neurofibroma samples. RAK analyzed the data, drafted, and revised the paper. PP designed the experiments, cultured Schwann cells, performed the assays, analyzed the data, and wrote the paper. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Juha Peltonen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study has been performed in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Southwest Finland Hospital District, and patients gave their informed written consents. The study was carried out at Turku University Hospital and the University of Turku.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennanen, P., Peltonen, S., Kallionpää, R.A. et al. The effect of estradiol, testosterone, and human chorionic gonadotropin on the proliferation of Schwann cells with NF1 +/− or NF1 −/− genotype derived from human cutaneous neurofibromas. Mol Cell Biochem 444, 27–33 (2018). https://doi.org/10.1007/s11010-017-3227-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3227-2

Keywords

Navigation