Skip to main content
Log in

Survival of lung cancer patients is prolonged with higher regucalcin gene expression: suppressed proliferation of lung adenocarcinoma A549 cells in vitro

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Regucalcin plays a crucial role as a suppressor of transcription signaling, and its diminished expression or activity may play a key role in human carcinogenesis. Higher regucalcin expression has been demonstrated to prolong survival of the patients of pancreatic cancer, breast cancer, and hepatocellular carcinoma. Moreover, we investigated an involvement of regucalcin in human lung cancer. Human non-small cell lung cancer (NSCLC) accounts for over 80% in human lung cancer and is one of the leading causes of malignancy-related mortality with fewer than 16% patients surviving beyond 5 years. In this study, gene expression and survival data of 204 lung adenocarcinoma patients were obtained through the gene expression omnibus database (GSE31210) for outcome analysis. Gene expression data demonstrated that prolonged survival in lung cancer patients is associated with higher regucalcin gene expression. Overexpression of regucalcin suppressed the proliferation, cell death, and migration of human lung adenocarcinoma NSCLC A549 cells in vitro. Mechanistically, regucalcin induced G1 and G2/M phase cell cycle arrest of A549 cells through suppression of multiple signaling pathways including Ras, Akt, MAP kinase, and SAPK/JNK. Moreover, overexpression of regucalcin caused decreases in the oncogenes c-fos and c-myc and elevation of the tumor suppressers p53 and Rb. These findings suggest that regucalcin may play a potential role as a suppressor of human lung cancer, and that downregulation of regucalcin expression may predispose patients to development of lung cancer. Overexpression of regucalcin using gene delivery may constitute a novel therapeutic approach to treating lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nguyen KS, Neal JW, Wakelee H (2014) Review of the current targeted therapies for non-small-cell lung cancer. Wold. J Clin Oncol 5:576–587

    Google Scholar 

  2. Li K, Liu J, Tian M, Piao C, Ruan J, Gao L, Qi X, G G, Su X (2015) The role of CHMP4C on proliferation in the human lung cancer A549 cells. J Cancer Ther 6:1223–1228

    Article  Google Scholar 

  3. Phillips RJ, Mestas J, Gharaee-Kermani M, Burdick MD, Sica A, Belperio JA, Keane MP, Strieter RM (2005) EGF and hypoxia-induced expression of CXCR4 On non-small cell lung cancer cells is regulated by the PI3-kinase/PTEN/Akt/mTOR signaling pathway and activation of HIF-1α. J Biol Chem 280:22473–22481

    Article  CAS  PubMed  Google Scholar 

  4. Gower A, Wang Y, Giaccone G (2014) Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer. J Mol Med 92:697–707

    Article  CAS  PubMed  Google Scholar 

  5. van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA (2009) Cell division by the chromosomal passenger complex. Exp Cell Res 318:1407–1420

    Article  Google Scholar 

  6. Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8:547–566

    Article  CAS  PubMed  Google Scholar 

  7. Yu X, Riley T, Levine AJ (2009) The regulation of the endosomal compatment by p53 the tumor suppressor gene. FEBS J 276:2201–2212

    Article  CAS  PubMed  Google Scholar 

  8. Dai Z, Popkie AP, Zhu W-G, Timmers CD, Raval A, Tannehill-Gregg S, Morrison CD, Auer H, Kratzke RA, Niehans G, Amatschek S, Sommergruber W, Leone GW, Rosol T, Otterson GA, Plass C (2004) Bone morphogenetic protein 3B silencing in non-small cell lung cancer. Oncogene 23:3521–3529

    Article  CAS  PubMed  Google Scholar 

  9. Shimokawa N, Yamaguchi M (1993) Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett 327:251–255

    Article  CAS  PubMed  Google Scholar 

  10. Yamaguchi M (2011) The transcriptional regulation of regucalcin gene expression. Mol Cell Biochem 346:147–171

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function. Int J Mol Med 15:372–389

    Google Scholar 

  12. Yamaguchi M (2011) Regucalcin and cell regulation: role as a suppressor in cell signaling. Mol Cell Biochem 353:101–137

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi M (2013) Role of regucalcin in cell nuclear regulation: Involvement as a transcription factor. Cell Tissue Res 354:331–341

    Article  CAS  PubMed  Google Scholar 

  14. Yamaguchi M (2013) Suppressive role of regucalcin in liver cell proliferation: Involvement in carcinogenesis. Cell Prolif 46:243–253

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi M (2013) The anti-apoptotic effect of regucalcin is mediated through multisignaling pathways. Apoptosis 18:1145–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamaguchi M (2015) Involvement of regucalcin as a suppressor protein in carcinogenesis. Insight into the gene therapy. J Cancer Res Clin Oncol 141:1333–1341

    Article  CAS  PubMed  Google Scholar 

  17. Murata T, Yamaguchi M (2014) Alternatively spliced variants of the regucalcin gene in various human normal and tumor tissues. Int J Mol Med 34:1141–1146

    CAS  PubMed  Google Scholar 

  18. Yamaguchi M, Osuka S, Weitzmann MN, El-Rayes BF, Shoji S, Murata T (2016) Prolonged survival in pancreatic cancer patients with increased regucalcin gene expression: Overexpression of regucalcin suppresses the proliferation in human pancreatic cancer MIA PaCa-2 cells in vitro. Int J Oncol 48:1955–1964

    CAS  PubMed  Google Scholar 

  19. Yamaguchi M, Osuka S, Weitzmann MN, Shoji S, Murata T (2016) Increased regucalcin gene expression extends survival in breast cancer patients: overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro. Int J Oncol 49:812–822

    PubMed  Google Scholar 

  20. Yamaguchi M, Osuka S, Weitzmann MN, Shoji S, Murata T (2016) Prolonged survival in hepatocarcinoma patients with increased regucalcin gene expression: HepG2 cell proliferation is suppressed by overexpression of regucalcin in vitro. Int J Oncol 49:1686–1694

    CAS  PubMed  Google Scholar 

  21. Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, Furuta K, Tuta K, Shibata T, Yamamoto S et al (2012) Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res 72:100–111

    Article  CAS  PubMed  Google Scholar 

  22. Yamauchi M, Yamaguchi R, Nakata A, KohnoT, Nagasaki M, Shimamura T, Imoto S, Saito A, Ueno K, Hatanaka Y et al (2012) Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma. PLoS ONE 7:e43923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Misawa H, Inagaki S, Yamaguchi M (2002) Suppression of cell proliferation and deoxyribonucleic acid synthesis in cloned rat hepatoma H4-II-E cells overexpressing regucalcin. J Cell Biochem 84:143–149

    Article  Google Scholar 

  24. Izumi T, Yamaguchi M (2004) Overexpression of regucalcin suppresses cell death in cloned rat hepatoma H4-II-E cells induced by tumor necrosis factor-α or thapsigargin. J Cell Biochem 92:296–306

    Article  CAS  PubMed  Google Scholar 

  25. Liang C-C, Park AY, Guan J-L (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333

    Article  CAS  PubMed  Google Scholar 

  26. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, Inagaki M, Deleros JG, Moulinoux JP (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  CAS  PubMed  Google Scholar 

  27. Singh SV, Herman-Antosiewice A, Singh AV, Lew KL, Strivastava SK, Kamath R, Brown KD, Zhang L, Baskaran R (2004) Sulforaphan-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25 C. J Biol Chem 279:25813–25822

    Article  CAS  PubMed  Google Scholar 

  28. Charollais RH, Buquet C, Mester J (1990) Butyrate blocks the accumulation of cdc2 mRNA in late G1 phase but inhibits both early and late G1 progression in chemically transformed mouse fibroblasts BP-A31. J Cell Physiol 145:46–52

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi M, Daimon Y (2005) Overexpression of regucalcin suppresses cell proliferation in cloned rat hepatoma H4-II-E cells: involvement of intracellular signaling factors and cell cycle-related genes. J Cell Biochem 95:1169–1177

    Article  CAS  PubMed  Google Scholar 

  30. Nakagawa T, Sawada N, Yamaguchi M (2005) Overexpression of regucalcin suppresses cell proliferation of cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 16:637–643

    CAS  PubMed  Google Scholar 

  31. Serrano-Nascimento C, da Silva Teixeira S, Nicola JP, Nachbar RT, Masini-Repiso AM, Nunes MT (2014) The acute inhibitory effect of iodide excess on sodium/iodide symporter expression and activity involves the PI3K/Akt signaling pathway. Endocrinology 155:1145–1156

    Article  PubMed  Google Scholar 

  32. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita E (1986) Staurosporine, a potent inhibitor of phospholipid/Ca2+ dependent protein kinase. Biochem Biophys Res Commun 135:397–402

    Article  CAS  PubMed  Google Scholar 

  33. Peleck SL, Charest DL, Mordret GP, Siow YL, Palaty C, Campbell D, Chaslton L, Samiei M, Sanghera JS (1993) Networking with mitogen-activated protein kinases. Mol Cell Biochem 127:157–169

    Article  Google Scholar 

  34. Palangat M, Grass JA, Langelier MF, Coulombe B, Landick R (2011) The RPB2 flap loop of human RNA polymerase II is dispensable for transcription initiation and elongation. Mol Cell Biol 31:3312–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang SC, Chen YC (2014) Novel therapeutic targets for pancreatic cancere. World J Gastroenterol 20:10825–10844

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsurusaki Y, Yamaguchi M (2004) Role of regucalcin in liver nuclear function: Binding of regucalcin to nuclear protein or DNA and modulation of tumor-related gene expression. Int J Mol Med 14:277–281

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Yamaguchi.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interests, and all research studies are conducted in an ethical manner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, M., Osuka, S., Shoji, M. et al. Survival of lung cancer patients is prolonged with higher regucalcin gene expression: suppressed proliferation of lung adenocarcinoma A549 cells in vitro. Mol Cell Biochem 430, 37–46 (2017). https://doi.org/10.1007/s11010-017-2952-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2952-x

Keywords

Navigation