Skip to main content
Log in

Overexpression of HDAC9 promotes oral squamous cell carcinoma growth, regulates cell cycle progression, and inhibits apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) are a family of deacetylase enzymes that regulate the acetylation state of histones and a variety of other non-histone proteins including key oncogenic and tumor suppressor proteins, which modulates chromatin conformation, leading to regulation of gene expression. HDACs has been grouped into classes I–IV and histone deacetylase 9 (HDAC9) belongs to class IIa which exhibits tissue-specific expression. Recent reports have demonstrated both pro-oncogenic and tumor suppressive role for HDAC9 in different cancers; however, its role in OSCC remains elusive. Here, we investigated the role of HDAC9 in pathogenesis of oral squamous cell carcinoma (OSCC). Our data showed significantly increased mRNA and protein expression of HDAC9 in clinical OSCC samples and UPCI-SCC-116 cells as compared to normal counterpart. Kaplan–Meier analysis showed that the patients with high-level of HDAC9 expression had significantly reduced overall survival than those with low-level of HDAC9 expression (p = 0.034). Knockdown of HDAC9 using siRNA interference suppressed cell proliferation, increased apoptosis, and induced G0/G1 cell cycle arrest in UPCI-SCC-116 cells. Immunofluorescence analysis showed increased nuclear localization of HDAC9 in frozen OSCC sections, and indicative of active HDAC9 that may transcriptionally repress its downstream target genes. Subsequent investigation revealed that overexpression of HDAC9 contributes to OSCC carcinogenesis via targeting a transcription factor, MEF2D, and NR4A1/Nur77, a pro-apoptotic MEF2 target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Coelho KR (2012) Challenges of the oral cancer burden in India. J Cancer Epidemiol 2012:701932

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang X-J, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310–5318

    Article  CAS  PubMed  Google Scholar 

  4. Thiagalingam S, Cheng K-H, Lee HJ et al (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100

    Article  CAS  PubMed  Google Scholar 

  5. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  CAS  PubMed  Google Scholar 

  6. Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1:19–25

    Article  CAS  PubMed  Google Scholar 

  7. Weichert W (2009) HDAC expression and clinical prognosis in human malignancies. Cancer Lett 280:168–176

    Article  CAS  PubMed  Google Scholar 

  8. Ozdağ H, Teschendorff AE, Ahmed AA et al (2006) Differential expression of selected histone modifier genes in human solid cancers. BMC Genom 7:90

    Article  Google Scholar 

  9. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  CAS  PubMed  Google Scholar 

  10. Kim DH, Kim M, Kwon HJ (2003) Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol 36:110–119

    Article  CAS  PubMed  Google Scholar 

  11. Petrie K, Guidez F, Howell L et al (2003) The histone deacetylase 9 gene encodes multiple protein isoforms. J Biol Chem 278:16059–16072

    Article  CAS  PubMed  Google Scholar 

  12. Zhang CL, McKinsey TA, Chang S et al (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299–1307

    Article  CAS  PubMed  Google Scholar 

  14. Morrison BE, D’Mello SR (2008) Polydactyly in mice lacking HDAC9/HDRP. Exp Biol Med Maywood NJ 233:980–988

    Article  CAS  Google Scholar 

  15. Méjat A, Ramond F, Bassel-Duby R et al (2005) Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 8:313–321

    Article  PubMed  Google Scholar 

  16. Sugo N, Oshiro H, Takemura M et al (2010) Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci 31:1521–1532

    PubMed  Google Scholar 

  17. Wong RHF, Chang I, Hudak CSS et al (2009) A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 136:1056–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Haberland M, Arnold MA, McAnally J et al (2007) Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation. Mol Cell Biol 27:518–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Milde T, Oehme I, Korshunov A et al (2010) HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res 16:3240–3252

    Article  CAS  PubMed  Google Scholar 

  20. Yang R, Wu Y, Wang M et al (2015) HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation. Oncotarget 6:7644–7656

    Article  PubMed  PubMed Central  Google Scholar 

  21. Parra M, Verdin E (2010) Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol 10:454–460

    Article  CAS  PubMed  Google Scholar 

  22. McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27:40–47

    Article  CAS  PubMed  Google Scholar 

  23. Molkentin JD, Olson EN (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA 93:9366–9373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Potthoff MJ, Olson EN (2007) MEF2: a central regulator of diverse developmental programs. Development 134:4131–4140

    Article  CAS  PubMed  Google Scholar 

  25. Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arnold MA, Kim Y, Czubryt MP et al (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi M, Kim S-W, Imanaka-Yoshida K et al (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113:1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mao Z, Bonni A, Xia F et al (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790

    Article  CAS  PubMed  Google Scholar 

  29. Gaudilliere B, Shi Y, Bonni A (2002) RNA interference reveals a requirement for myocyte enhancer factor 2A in activity-dependent neuronal survival. J Biol Chem 277:46442–46446

    Article  CAS  PubMed  Google Scholar 

  30. Mohan HM, Aherne CM, Rogers AC et al (2012) Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clin Cancer Res 18:3223–3228

    Article  CAS  PubMed  Google Scholar 

  31. Deutsch AJA, Angerer H, Fuchs TE, Neumeister P (2012) The nuclear orphan receptors NR4A as therapeutic target in cancer therapy. Anticancer Agents Med Chem 12:1001–1014

    Article  CAS  PubMed  Google Scholar 

  32. Li Q-X, Ke N, Sundaram R, Wong-Staal F (2006) NR4A1, 2, 3 an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol 21:533–540

    CAS  PubMed  Google Scholar 

  33. Raut SK, Kumar A, Singh GB et al (2015) miR-30c mediates upregulation of Cdc42 and Pak1 in diabetic cardiomyopathy. Cardiovasc Ther 33:89–97

    Article  CAS  PubMed  Google Scholar 

  34. Gao D-J, Xu M, Zhang Y-Q et al (2010) Upregulated histone deacetylase 1 expression in pancreatic ductal adenocarcinoma and specific siRNA inhibits the growth of cancer cells. Pancreas 39:994–1001

    Article  CAS  PubMed  Google Scholar 

  35. Clocchiatti A, Florean C, Brancolini C (2011) Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis. J Cell Mol Med 15:1833–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lucio-Eterovic AKB, Cortez MAA, Valera ET et al (2008) Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 8:243

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moreno DA, Scrideli CA, Cortez MAA et al (2010) Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol 150:665–673

    Article  CAS  PubMed  Google Scholar 

  38. Aragane H, Sakakura C, Nakanishi M et al (2001) Chromosomal aberrations in colorectal cancers and liver metastases analyzed by comparative genomic hybridization. Int J Cancer J Int Cancer 94:623–629

    Article  CAS  Google Scholar 

  39. Schmidt H, Taubert H, Würl P et al (2002) Gains of 12q are the most frequent genomic imbalances in adult fibrosarcoma and are correlated with a poor outcome. Genes Chromosomes Cancer 34:69–77

    Article  CAS  PubMed  Google Scholar 

  40. Jarosová M, Holzerová M, Jedlicková K et al (2000) Importance of using comparative genomic hybridization to improve detection of chromosomal changes in childhood acute lymphoblastic leukemia. Cancer Genet Cytogenet 123:114–122

    Article  PubMed  Google Scholar 

  41. Powlesland RM, Charles AK, Malik KT et al (2000) Loss of heterozygosity at 7p in Wilms’ tumour development. Br J Cancer 82:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt H, Würl P, Taubert H et al (1999) Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer 25:205–211

    Article  CAS  PubMed  Google Scholar 

  43. Yuan Z, Peng L, Radhakrishnan R, Seto E (2010) Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein. J Biol Chem 285:39329–39338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guidez F, Zelent A (2001) Role of nuclear receptor corepressors in leukemogenesis. Curr Top Microbiol Immunol 254:165–185

    CAS  PubMed  Google Scholar 

  45. Choi Y-W, Bae SM, Kim Y-W et al (2007) Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis. Int J Gynecol Cancer 17:687–696

    Article  PubMed  Google Scholar 

  46. Okudela K, Mitsui H, Suzuki T et al (2014) Expression of HDAC9 in lung cancer–potential role in lung carcinogenesis. Int J Clin Exp Pathol 7:213–220

    PubMed  PubMed Central  Google Scholar 

  47. Ma L, Liu J, Liu L et al (2014) Overexpression of the transcription factor MEF2D in hepatocellular carcinoma sustains malignant character by suppressing G2-M transition genes. Cancer Res 74:1452–1462

    Article  CAS  PubMed  Google Scholar 

  48. Clocchiatti A, Di Giorgio E, Ingrao S et al (2013) Class IIa HDACs repressive activities on MEF2-dependent transcription are associated with poor prognosis of ER+ breast tumors. FASEB J 27:942–954

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Bhawna Rastogi is a PhD student in the Department of Otolaryngology and Head and Neck Surgery, PGIMER, and fellowship was provided by Indian Council of Medical Education and Research, (3/1/3/JRF-2011/HRD 25), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Khullar.

Ethics declarations

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastogi, B., Raut, S.K., Panda, N.K. et al. Overexpression of HDAC9 promotes oral squamous cell carcinoma growth, regulates cell cycle progression, and inhibits apoptosis. Mol Cell Biochem 415, 183–196 (2016). https://doi.org/10.1007/s11010-016-2690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2690-5

Keywords

Navigation