Skip to main content
Log in

Adrenomedullin promotes human endothelial cell proliferation via HIF-1α

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Adrenomedullin (ADM) and hypoxia-inducible factor-1α (HIF-1α) are important pro-proliferation genes in response to hypoxic stress. Although it was reported that ADM is a target gene for HIF-1, recent studies also showed that ADM regulates HIF-1 expression and its activity; however, the mechanism of action remains unknown. Two stable human endothelial cell lines with HIF-1α knockdown by hy926–siHIF-1α or HMEC–siHIF-1α were established. mRNA and protein expression of ADM and HIF-1α in EA.hy926 and HMEC1 cells were examined under hypoxic stress. Upon ADM treatment, cell proliferation was investigated and the expression profiles of HIF-1α and its target genes (VEGF, PFKP, PGK1, and AK1) were examined. Furthermore, the proline hydroxylase (PHD) mRNA level and its activity were investigated. We observed that mRNA and protein expression of ADM in hypoxia are earlier events than HIF-1α in EA.hy926 and HMEC1 cells. ADM-promoted cell proliferation of endothelial cells, which was HIF-1α dependent. We also found that ADM up-regulated the mRNA and protein expressions of HIF-1α- and HIF-1-targeted genes, and ADM up-regulated the protein expressions of HIF-1α through down-regulation of PHD mRNA expression and PHD activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADM:

Adrenomedullin

AMA:

Adrenomedullin antagonist

AK1:

Adenylate kinase 1

CRLR:

Calcitonin receptor-like receptor

GPCR:

G protein-coupled receptor

HIF-1α:

Hypoxia-inducible factor-1α

HRE:

Hypoxia response element

PFKP:

Platelet-type phosphofructokinase

PGK1:

Phosphoglycerate kinase 1

PHD:

Proline hydroxylase

VEGF:

Vascular endothelial growth factor

vHL:

von Hippel–Lindau protein

References

  1. Marti HH, Risau W (1999) Angiogenesis in ischemic disease. Thromb Haemost 82(Suppl 1):44–52

    PubMed  Google Scholar 

  2. Fink MP (2000) Cytopathic hypoxia. A concept to explain organ dysfunction in sepsis. Minerva Anestesiol 66(5):337–342

    PubMed  CAS  Google Scholar 

  3. Shimoda LA, Semenza GL (2011) HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med 183(2):152–156. doi:10.1164/rccm.201009-1393PP

    Article  PubMed  CAS  Google Scholar 

  4. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192(2):553–560. doi:10.1006/bbrc.1993.1451

    Article  PubMed  CAS  Google Scholar 

  5. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54(2):233–246

    Article  PubMed  CAS  Google Scholar 

  6. Ribatti D, Guidolin D, Conconi MT, Nico B, Baiguera S, Parnigotto PP, Vacca A, Nussdorfer GG (2003) Vinblastine inhibits the angiogenic response induced by adrenomedullin in vitro and in vivo. Oncogene 22(41):6458–6461. doi:10.1038/sj.onc.1206789

    Article  PubMed  CAS  Google Scholar 

  7. Schwarz N, Renshaw D, Kapas S, Hinson JP (2006) Adrenomedullin increases the expression of calcitonin-like receptor and receptor activity modifying protein 2 mRNA in human microvascular endothelial cells. J Endocrinol 190(2):505–514. doi:10.1677/joe.1.06806

    Article  PubMed  CAS  Google Scholar 

  8. Malendowicz LK, Conconi MT, Parnigotto PP, Nussdorfer GG (2003) Endogenous adrenomedullin system regulates the growth of rat adrenocortical cells cultured in vitro. Regul Pept 112(1–3):27–31

    Article  PubMed  CAS  Google Scholar 

  9. Uzan B, Villemin A, Garel JM, Cressent M (2008) Adrenomedullin is anti-apoptotic in osteoblasts through CGRP1 receptors and MEK-ERK pathway. J Cell Physiol 215(1):122–128. doi:10.1002/jcp.21294

    Article  PubMed  CAS  Google Scholar 

  10. Li Y, Jiang C, Wang X, Zhang Y, Shibahara S, Takahashi K (2007) Adrenomedullin is a novel adipokine: adrenomedullin in adipocytes and adipose tissues. Peptides 28(5):1129–1143. doi:10.1016/j.peptides.2007.03.005

    Article  PubMed  CAS  Google Scholar 

  11. Cameron VA, Fleming AM (1998) Novel sites of adrenomedullin gene expression in mouse and rat tissues. Endocrinology 139(5):2253–2264

    Article  PubMed  CAS  Google Scholar 

  12. Hwang IS, Autelitano DJ, Wong PY, Leung GP, Tang F (2003) Co-expression of adrenomedullin and adrenomedullin receptors in rat epididymis: distinct physiological actions on anion transport. Biol Reprod 68(6):2005–2012. doi:10.1095/biolreprod.102.011015

    Article  PubMed  CAS  Google Scholar 

  13. Miller MJ, Martinez A, Unsworth EJ, Thiele CJ, Moody TW, Elsasser T, Cuttitta F (1996) Adrenomedullin expression in human tumor cell lines. Its potential role as an autocrine growth factor. J Biol Chem 271(38):23345–23351

    Article  PubMed  CAS  Google Scholar 

  14. Oehler MK, Norbury C, Hague S, Rees MC, Bicknell R (2001) Adrenomedullin inhibits hypoxic cell death by upregulation of Bcl-2 in endometrial cancer cells: a possible promotion mechanism for tumour growth. Oncogene 20(23):2937–2945. doi:10.1038/sj.onc.1204422

    Article  PubMed  CAS  Google Scholar 

  15. Miseki T, Kawakami H, Natsuizaka M, Darmanin S, Cui HY, Chen J, Fu Q, Okada F, Shindo M, Higashino F, Asaka M, Hamuro J, Kobayashi M (2007) Suppression of tumor growth by intra-muscular transfer of naked DNA encoding adrenomedullin antagonist. Cancer Gene Ther 14(1):39–44. doi:10.1038/sj.cgt.7700979

    Article  PubMed  CAS  Google Scholar 

  16. Berchner-Pfannschmidt U, Frede S, Wotzlaw C, Fandrey J (2008) Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing. Eur Respir J 32(1):210–217. doi:10.1183/09031936.00013408

    Article  PubMed  CAS  Google Scholar 

  17. Cormier-Regard S, Nguyen SV, Claycomb WC (1998) Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J Biol Chem 273(28):17787–17792

    Article  PubMed  CAS  Google Scholar 

  18. Nakayama M, Takahashi K, Murakami O, Shirato K, Shibahara S (1998) Induction of adrenomedullin by hypoxia and cobalt chloride in human colorectal carcinoma cells. Biochem Biophys Res Commun 243(2):514–517. doi:10.1006/bbrc.1998.8131

    Article  PubMed  CAS  Google Scholar 

  19. Liang GP, Su YY, Chen J, Yang ZC, Liu YS, Luo XD (2009) Analysis of the early adaptive response of endothelial cells to hypoxia via a long serial analysis of gene expression. Biochem Biophys Res Commun 384(4):415–419. doi:10.1016/j.bbrc.2009.04.160

    Article  PubMed  CAS  Google Scholar 

  20. MacManus CF, Campbell EL, Keely S, Burgess A, Kominsky DJ, Colgan SP (2011) Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization. FASEB J 25(6):1856–1864. doi:10.1096/fj.10-170316

    Article  PubMed  CAS  Google Scholar 

  21. Chen L, Qiu J, Yang C, Yang X, Chen X, Jiang J, Luo X (2009) Identification of a novel estrogen receptor beta1 binding partner, inhibitor of differentiation-1, and role of ERbeta1 in human breast cancer cells. Cancer Lett 278(2):210–219. doi:10.1016/j.canlet.2009.01.008

    Article  PubMed  CAS  Google Scholar 

  22. Knowles HJ, Tian YM, Mole DR, Harris AL (2004) Novel mechanism of action for hydralazine: induction of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by inhibition of prolyl hydroxylases. Circ Res 95(2):162–169. doi:10.1161/01.RES.0000134924.89412.70

    Article  PubMed  CAS  Google Scholar 

  23. Moeller LC, Dumitrescu AM, Refetoff S (2005) Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor-1alpha and glycolytic genes. Mol Endocrinol 19(12):2955–2963. doi:10.1210/me.2004-0542

    Article  PubMed  CAS  Google Scholar 

  24. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187

    Article  PubMed  CAS  Google Scholar 

  25. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr (1995) Binding of the von Hippel–Lindau tumor suppressor protein to Elongin B and C. Science 269(5229):1444–1446

    Article  PubMed  CAS  Google Scholar 

  26. Guidolin D, Albertin G, Spinazzi R, Sorato E, Mascarin A, Cavallo D, Antonello M, Ribatti D (2008) Adrenomedullin stimulates angiogenic response in cultured human vascular endothelial cells: involvement of the vascular endothelial growth factor receptor 2. Peptides 29(11):2013–2023. doi:10.1016/j.peptides.2008.07.009

    Article  PubMed  CAS  Google Scholar 

  27. Kitamuro T, Takahashi K, Nakayama M, Murakami O, Hida W, Shirato K, Shibahara S (2000) Induction of adrenomedullin during hypoxia in cultured human glioblastoma cells. J Neurochem 75(5):1826–1833

    Article  PubMed  CAS  Google Scholar 

  28. Garayoa M, Martínez A, Lee S, Pío R, An WG, Neckers L, Trepel J, Montuenga LM, Ryan H, Johnson R, Gassmann M, Cuttitta F (2000) Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol 14(6):848–862

    Article  PubMed  CAS  Google Scholar 

  29. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90(9):4304–4308

    Article  PubMed  CAS  Google Scholar 

  30. Nikitenko LL, MacKenzie IZ, Rees MC, Bicknell R (2000) Adrenomedullin is an autocrine regulator of endothelial growth in human endometrium. Mol Hum Reprod 6(9):811–819

    Article  PubMed  CAS  Google Scholar 

  31. Kato H, Shichiri M, Marumo F, Hirata Y (1997) Adrenomedullin as an autocrine/paracrine apoptosis survival factor for rat endothelial cells. Endocrinology 138(6):2615–2620

    Article  PubMed  CAS  Google Scholar 

  32. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269(38):23757–23763

    PubMed  CAS  Google Scholar 

  33. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472. doi:10.1126/science.10597961059796

    Article  PubMed  CAS  Google Scholar 

  34. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2(7):423–427. doi:10.1038/35017054

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Grants from the National Natural Science Foundation of China (No. 30730093; 81072157).

Conflict of interest

There are no conflicts of interest for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Chen or Xiang-Dong Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Qiu, JH., Zhang, LL. et al. Adrenomedullin promotes human endothelial cell proliferation via HIF-1α. Mol Cell Biochem 365, 263–273 (2012). https://doi.org/10.1007/s11010-012-1267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1267-1

Keywords

Navigation