Skip to main content
Log in

Anti-inflammatory effect of insulin in the human hepatoma cell line HepG2 involves decreased transcription of IL-6 target genes and nuclear exclusion of FOXO1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The liver is an important target for interleukin-6 (IL-6) action leading to an increased inflammatory response with impaired insulin signaling and action. The aims of this study are to address if insulin is anti-inflammatory and attenuates IL-6-induced inflammation in the human hepatoma cell line HepG2 and if this involves signal transducer and activator of transcription 3 (STAT3) signal transduction. It was found that insulin significantly reduced IL-6-induced gene transcription of serum amyloid 1 (SAA1), serum amyloid 2 (SAA2), haptoglobin, orosomucoid, and plasmin activator inhibitor-1 (PAI-1). However, the authors did not find any evidence that insulin inhibited IL-6 signal transduction, i.e., no effect of insulin was detected on STAT3 phosphorylation or its translocation to cell nucleus. The potential role of PKCδ was also analyzed but no evidence of its involvement was found. Taken together, these results suggest that the anti-inflammatory effect of insulin on IL-6 action is exerted at the level of the transcriptional activation of the genes. Further analysis revealed that insulin regulates nuclear localization of FOXO1, which is an important co-activator for STAT3 mediated transcription. Insulin induced nuclear exit and Thr24 phosphorylation of FOXO1, thus, inhibiting STAT3-mediated transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IL-6:

Interleukin-6

STAT3:

Signal transducer and activator of transcription 3

SAA1:

Serum amyloid A 1

SAA2:

Serum amyloid A 2

PAI-1:

Plasminogen activator inhibitor 1

SOCS3:

Suppressor of cytokine signaling

SHP2:

Src homology 2 domain (SH2)-containing proteins

FOXO1:

Forkhead box O1

NAFLD:

Non-alcoholic Fatty Liver Disease

NASH:

Non-alcolholic steatohepatitis

ROS:

Reactive oxygen species

NF-κB:

Nuclear factor kappa B

TNFα:

Tumor necrosis factor-α

gp130:

Glycoprotein 130

JAK2:

Janus kinase 2

CRP:

C-reactive protein

PIAS:

Protein inhibitor of STAT3

HDAC1:

Histone deacetylase

PKCδ:

Protein kinase C δ

PLCγ-1:

Phospholipase C γ-1

PML:

Promyelocytic leukemia oncoprotein

HFD:

High fat diet

References

  1. Angulo P (2007) Obesity and nonalcoholic fatty liver disease. Nutr Rev 65(6 Pt 2):S57–S63

    Article  PubMed  Google Scholar 

  2. Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE (2008) Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol 103(6):1372

    Article  PubMed  CAS  Google Scholar 

  3. Gupte P, Amarapurkar D, Agal S, Baijal R, Kulshrestha P, Pramanik S, Patel N, Madan A, Amarapurkar A, Hafeezunnisa (2004) Non-alcoholic steatohepatitis in type 2 diabetes mellitus. J Gastroenterol Hepatol 19(8):854–858

    Article  PubMed  Google Scholar 

  4. Brunt EM, Tiniakos DG (2005) Pathological features of NASH. Front Biosci 10:1475–1484

    PubMed  CAS  Google Scholar 

  5. Ramadori G, Saile B (2004) Inflammation, damage repair, immune cells, and liver fibrosis: specific or nonspecific, this is the question. Gastroenterology 127(3):997–1000

    Article  PubMed  CAS  Google Scholar 

  6. Klover PJ, Zimmers TA, Koniaris LG, Mooney RA (2003) Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 52(11):2784–2789

    Article  PubMed  CAS  Google Scholar 

  7. Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51(12):3391–3399

    Article  PubMed  CAS  Google Scholar 

  8. Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, Mooney RA (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278(16):13740–13746

    Article  PubMed  CAS  Google Scholar 

  9. Andersson CX, Sopasakis VR, Wallerstedt E, Smith U (2007) Insulin antagonizes interleukin-6 signaling and is anti-inflammatory in 3T3–L1 adipocytes. J Biol Chem 282(13):9430–9435

    Article  PubMed  CAS  Google Scholar 

  10. Aljada A, Ghanim H, Mohanty P, Kapur N, Dandona P (2002) Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab 87(3):1419–1422

    Article  PubMed  CAS  Google Scholar 

  11. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, Ahmad S (2001) Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 86(7):3257–3265

    Article  PubMed  CAS  Google Scholar 

  12. Jeschke MG, Rensing H, Klein D, Schubert T, Mautes AE, Bolder U, Croner RS (2005) Insulin prevents liver damage and preserves liver function in lipopolysaccharide-induced endotoxemic rats. J Hepatol 42(6):870–879

    Article  PubMed  CAS  Google Scholar 

  13. May P, Schniertshauer U, Gerhartz C, Horn F, Heinrich PC (2003) Signal transducer and activator of transcription STAT3 plays a major role in gp130-mediated acute phase protein gene activation. Acta Biochim Pol 50(3):595–601

    PubMed  CAS  Google Scholar 

  14. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20

    Article  PubMed  CAS  Google Scholar 

  15. Wallerstedt E, Smith U, Andersson CX (2010) Protein kinase C-delta is involved in the inflammatory effect of IL-6 in mouse adipose cells. Diabetologia 53(5):946–954

    Article  PubMed  CAS  Google Scholar 

  16. Kortylewski M, Feld F, Kruger KD, Bahrenberg G, Roth RA, Joost HG, Heinrich PC, Behrmann I, Barthel A (2003) Akt modulates STAT3-mediated gene expression through a FKHR (FOXO1a)-dependent mechanism. J Biol Chem 278(7):5242–5249

    Article  PubMed  CAS  Google Scholar 

  17. Carter ME, Brunet A (2007) FOXO transcription factors. Curr Biol 17(4):R113–R114

    Article  PubMed  CAS  Google Scholar 

  18. Kim JH, Kim JE, Liu HY, Cao W, Chen J (2008) Regulation of interleukin-6-induced hepatic insulin resistance by mammalian target of rapamycin through the STAT3-SOCS3 pathway. J Biol Chem 283(2):708–715

    Article  PubMed  CAS  Google Scholar 

  19. Schuringa JJ, Dekker LV, Vellenga E, Kruijer W (2001) Sequential activation of Rac-1, SEK-1/MKK-4, and protein kinase Cdelta is required for interleukin-6-induced STAT3 Ser-727 phosphorylation and transactivation. J Biol Chem 276(29):27709–27715

    Article  PubMed  CAS  Google Scholar 

  20. Abe K, Hirai M, Mizuno K, Higashi N, Sekimoto T, Miki T, Hirano T, Nakajima K (2001) The YXXQ motif in gp 130 is crucial for STAT3 phosphorylation at Ser727 through an H7-sensitive kinase pathway. Oncogene 20(27):3464–3474

    Article  PubMed  CAS  Google Scholar 

  21. Jain N, Zhang T, Kee WH, Li W, Cao X (1999) Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem 274(34):24392–24400

    Article  PubMed  CAS  Google Scholar 

  22. Campos SP, Wang Y, Baumann H (1996) Insulin modulates STAT3 protein activation and gene transcription in hepatic cells. J Biol Chem 271(40):24418–24424

    Article  PubMed  CAS  Google Scholar 

  23. Sassa S, Sugita O, Galbraith RA, Kappas A (1987) Drug metabolism by the human hepatoma cell, Hep G2. Biochem Biophys Res Commun 143(1):52–57

    Article  PubMed  CAS  Google Scholar 

  24. Miyazaki T, Bub JD, Uzuki M, Iwamoto Y (2005) Adiponectin activates c-Jun NH2-terminal kinase and inhibits signal transducer and activator of transcription 3. Biochem Biophys Res Commun 333(1):79–87

    Article  PubMed  CAS  Google Scholar 

  25. Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278(5344):1803–1805

    Article  PubMed  CAS  Google Scholar 

  26. Ma KW, Au SW, Waye MM (2009) Over-expression of SUMO-1 induces the up-regulation of heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG) in hepG2 cells. Cell Biochem Funct 27(4):228–237

    Article  PubMed  CAS  Google Scholar 

  27. Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15(5):536–541

    Article  PubMed  CAS  Google Scholar 

  28. Zhong S, Salomoni P, Pandolfi PP (2000) The transcriptional role of PML and the nuclear body. Nat Cell Biol 2(5):E85–E90

    Article  PubMed  CAS  Google Scholar 

  29. Herrmann A, Sommer U, Pranada AL, Giese B, Kuster A, Haan S, Becker W, Heinrich PC, Muller-Newen G (2004) STAT3 is enriched in nuclear bodies. J Cell Sci 117(Pt 2):339–349

    Article  PubMed  CAS  Google Scholar 

  30. Ray S, Boldogh I, Brasier AR (2005) STAT3 NH2-terminal acetylation is activated by the hepatic acute-phase response and required for IL-6 induction of angiotensinogen. Gastroenterology 129(5):1616–1632

    Article  PubMed  CAS  Google Scholar 

  31. Ray S, Lee C, Hou T, Boldogh I, Brasier AR (2008) Requirement of histone deacetylase1 (HDAC1) in signal transducer and activator of transcription 3 (STAT3) nucleocytoplasmic distribution. Nucleic Acids Res 36(13):4510–4520

    Article  PubMed  CAS  Google Scholar 

  32. Hennige AM, Ranta F, Heinzelmann I, Dufer M, Michael D, Braumuller H, Lutz SZ, Lammers R, Drews G, Bosch F, Haring HU, Ullrich S (2010) Overexpression of kinase-negative protein kinase Cdelta in pancreatic beta-cells protects mice from diet-induced glucose intolerance and beta-cell dysfunction. Diabetes 59(1):119–127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the European Commission (HEPADIP LSHM- CT-2005-018734), the Swedish Diabetes Association, the Swedish Research Council, the Novo Nordisk Foundation, the Swedish Foundation for Strategic Research, the Sonya Hedenbratt Memorial Fund, the Martina and Willhelm Lundgren Foundation, the IngaBritt and Arne Lundberg Foundation, the Torsten and Ragnar Söderberg’s Foundation, the Gothenburg Royal Society of Arts, Lars Hierta Memorial Fund, OE and Edla Johansson Foundation, Swedish Insurance Society, Thuring Foundation, Magn Bergvall Foundation, Åke Wiberg Foundation and EFSD/Lilly Research Fellowship Programme 2010. The authors wish to thank Dr. Anna Krook for providing HepG2 cells. The authors also thank Dr. Ann Hammarstedt for statistical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian X. Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallerstedt, E., Sandqvist, M., Smith, U. et al. Anti-inflammatory effect of insulin in the human hepatoma cell line HepG2 involves decreased transcription of IL-6 target genes and nuclear exclusion of FOXO1. Mol Cell Biochem 352, 47–55 (2011). https://doi.org/10.1007/s11010-011-0738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0738-0

Keywords

Navigation