Skip to main content
Log in

Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Studied for nearly 30 years for its ability to control many parameters, such as vascular smooth muscle cell relaxation, heart fibrosis, and kidney function, the natriuretic peptide (NP) system is now considered to be a key element in several other major metabolic pathways. After stimulation by NPs, natriuretic peptide receptors (NPR) convert GTP to the second messenger cGMP. In addition to its vasodilatory effects and natriuretic and diuretic functions, cGMP has been positively associated with fat cell function, apoptosis, and NPR expression/activity modulation. The NP system is also closely linked to metabolic syndrome (MetS) progression and obesity control. A new era is now on its way targeting the NP system to not only treat high blood pressure, but to also assist in the fight against the obesity pandemic. Here, we summarize recent data on the role of NPs in hypertension and MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    PubMed  Google Scholar 

  2. Anand-Srivastava MB, Srivastava AK, Cantin M (1987) Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase. Involvement of inhibitory guanine nucleotide regulatory protein. J Biol Chem 262:4931–4934

    CAS  PubMed  Google Scholar 

  3. Anand-Srivastava MB, Trachte GJ (1993) Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45:455–497

    CAS  PubMed  Google Scholar 

  4. Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718. doi:10.1038/nrm911

    CAS  PubMed  Google Scholar 

  5. Bennett BD, Bennett GL, Vitangcol RV, Jewett JR, Burnier J, Henzel W, Lowe DG (1991) Extracellular domain-IgG fusion proteins for three human natriuretic peptide receptors. Hormone pharmacology and application to solid phase screening of synthetic peptide antisera. J Biol Chem 266:23060–23067

    CAS  PubMed  Google Scholar 

  6. Chen HH, Burnett JC Jr (1998) C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. J Cardiovasc Pharmacol 32(Suppl 3):S22–S28

    CAS  PubMed  Google Scholar 

  7. Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC Jr (1988) Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 62:191–195

    CAS  PubMed  Google Scholar 

  8. Garbers DL (1991) Guanylyl cyclase-linked receptors. Pharmacol Ther 50:337–345. doi:10.1016/0163-7258(91)90049-R

    CAS  PubMed  Google Scholar 

  9. Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30741–30744

    CAS  PubMed  Google Scholar 

  10. Grepin C, Dagnino L, Robitaille L, Haberstroh L, Antakly T, Nemer M (1994) A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol 14:3115–3129

    CAS  PubMed  Google Scholar 

  11. Hamet P, Tremblay J, Pang SC, Garcia R, Thibault G, Gutkowska J, Cantin M, Genest J (1984) Effect of native and synthetic atrial natriuretic factor on cyclic GMP. Biochem Biophys Res Commun 123:515–527. doi:10.1016/0006-291X(84)90260-2

    CAS  PubMed  Google Scholar 

  12. Maack T, Suzuki M, Almeida FA, Nussenzveig D, Scarborough RM, McEnroe GA, Lewicki JA (1987) Physiological role of silent receptors of atrial natriuretic factor. Science 238:675–678. doi:10.1126/science.2823385

    CAS  PubMed  Google Scholar 

  13. Porter JG, Arfsten A, Fuller F, Miller JA, Gregory LC, Lewicki JA (1990) Isolation and functional expression of the human atrial natriuretic peptide clearance receptor cDNA. Biochem Biophys Res Commun 171:796–803. doi:10.1016/0006-291X(90)91216-F

    CAS  PubMed  Google Scholar 

  14. Potter LR, Hunter T (2001) Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem 276:6057–6060. doi:10.1074/jbc.R000033200

    CAS  PubMed  Google Scholar 

  15. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81. doi:10.1038/332078a0

    CAS  PubMed  Google Scholar 

  16. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168:863–870. doi:10.1016/0006-291X(90)92401-K

    CAS  PubMed  Google Scholar 

  17. Takei Y (2001) Does the natriuretic peptide system exist throughout the animal and plant kingdom? Comp Biochem Physiol B 129:559–573. doi:10.1016/S1096-4959(01)00366-9

    CAS  PubMed  Google Scholar 

  18. Thuerauf DJ, Hanford DS, Glembotski CC (1994) Regulation of rat brain natriuretic peptide transcription. A potential role for GATA-related transcription factors in myocardial cell gene expression. J Biol Chem 269:17772–17775

    CAS  PubMed  Google Scholar 

  19. Tremblay J, Gerzer R, Pang SC, Cantin M, Genest J, Hamet P (1986) ANF stimulation of detergent-dispersed particulate guanylate cyclase from bovine adrenal cortex. FEBS Lett 194:210–214. doi:10.1016/0014-5793(86)80086-2

    CAS  PubMed  Google Scholar 

  20. Yan W, Wu F, Morser J, Wu Q (2000) Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci USA 97:8525–8529

    CAS  PubMed  Google Scholar 

  21. Kumar P, Arise KK, Pandey KN (2006) Transcriptional regulation of guanylyl cyclase/natriuretic peptide receptor-A gene. Peptides 27:1762–1769. doi:10.1016/j.peptides.2006.01.004

    CAS  PubMed  Google Scholar 

  22. Garg R, Pandey KN (2005) Regulation of guanylyl cyclase/natriuretic peptide receptor-A gene expression. Peptides 26:1009–1023. doi:10.1016/j.peptides.2004.09.022

    CAS  PubMed  Google Scholar 

  23. Tremblay J, Hum D, Sanchez R, Dumas P, Pravenec M, Krenova D, Kren V, Kunes J, Pausova Z, Gossard F, Hamet P (2003) TA repeat variation, Npr1 expression, and blood pressure: impact of the Ace locus. Hypertension 41:16–24. doi:10.1161/01.HYP.0000042664.75193.1B

    CAS  PubMed  Google Scholar 

  24. Tremblay J, Huot C, Willenbrock RC, Bayard F, Gossard F, Fujio N, Koch C, Kuchel O, Debinski W, Hamet P (1993) Increased cyclic guanosine monophosphate production and overexpression of atrial natriuretic peptide A-receptor mRNA in spontaneously hypertensive rats. J Clin Invest 92:2499–2508. doi:10.1172/JCI116858

    CAS  PubMed  Google Scholar 

  25. Cao L, Wu J, Gardner DG (1995) Atrial natriuretic peptide suppresses the transcription of its guanylyl cyclase-linked receptor. J Biol Chem 270:24891–24897. doi:10.1074/jbc.270.42.24891

    CAS  PubMed  Google Scholar 

  26. Hum D, Besnard S, Sanchez R, Devost D, Gossard F, Hamet P, Tremblay J (2004) Characterization of a cGMP-response element in the guanylyl cyclase/natriuretic peptide receptor A gene promoter. Hypertension 43:1270–1278. doi:10.1161/01.HYP.0000126920.93207.53

    CAS  PubMed  Google Scholar 

  27. Potter LR, Garbers DL (1994) Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation. J Biol Chem 269:14636–14642

    CAS  PubMed  Google Scholar 

  28. Potter LR, Hunter T (2000) Activation of protein kinase C stimulates the dephosphorylation of natriuretic peptide receptor-B at a single serine residue: a possible mechanism of heterologous desensitization. J Biol Chem 275:31099–31106

    CAS  PubMed  Google Scholar 

  29. Abbey SE, Potter LR (2002) Vasopressin-dependent inhibition of the C-type natriuretic peptide receptor, NPR-B/GC-B, requires elevated intracellular calcium concentrations. J Biol Chem 277:42423–42430. doi:10.1074/jbc.M206686200

    CAS  PubMed  Google Scholar 

  30. Sun JZ, Oparil S, Lucchesi P, Thompson JA, Chen YF (2001) Tyrosine kinase receptor activation inhibits NPR-C in lung arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 281:L155–L163

    CAS  PubMed  Google Scholar 

  31. Kishimoto I, Yoshimasa T, Suga S, Ogawa Y, Komatsu Y, Nakagawa O, Itoh H, Nakao K (1994) Natriuretic peptide clearance receptor is transcriptionally down-regulated by beta 2-adrenergic stimulation in vascular smooth muscle cells. J Biol Chem 269:28300–28308

    CAS  PubMed  Google Scholar 

  32. Sun JZ, Chen SJ, Majid-Hasan E, Oparil S, Chen YF (2002) Dietary salt supplementation selectively downregulates NPR-C receptor expression in kidney independently of ANP. Am J Physiol Renal Physiol 282:F220–F227. doi:10.1152/ajprenal.0166.2001

    PubMed  Google Scholar 

  33. Hartmann M, Skryabin BV, Muller T, Gazinski A, Schroter J, Gassner B, Nikolaev VO, Bunemann M, Kuhn M (2008) Alternative splicing of the guanylyl cyclase-A receptor modulates atrial natriuretic peptide signaling. J Biol Chem 283:28313–28320. doi:10.1074/jbc.M805521200

    CAS  PubMed  Google Scholar 

  34. Francoeur F, Gossard F, Hamet P, Tremblay J (1995) Alternative splicing of natriuretic peptide A and B receptor transcripts in the rat brain. Clin Exp Pharmacol Physiol Suppl 22:S172–S174

    CAS  PubMed  Google Scholar 

  35. Drewett JG, Fendly BM, Garbers DL, Lowe DG (1995) Natriuretic peptide receptor-B (guanylyl cyclase-B) mediates C-type natriuretic peptide relaxation of precontracted rat aorta. J Biol Chem 270:4668–4674. doi:10.1074/jbc.270.9.4668

    CAS  PubMed  Google Scholar 

  36. Rapoport RM, Waldman SA, Schwartz K, Winquist RJ, Murad F (1985) Effects of atrial natriuretic factor, sodium nitroprusside, and acetylcholine on cyclic GMP levels and relaxation in rat aorta. Eur J Pharmacol 115:219–229

    CAS  PubMed  Google Scholar 

  37. Lincoln TM (1983) Effects of nitroprusside and 8-bromo-cyclic GMP on the contractile activity of the rat aorta. J Pharmacol Exp Ther 224:100–107

    CAS  PubMed  Google Scholar 

  38. Kamm KE, Stull JT (1985) The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol 25:593–620. doi:10.1146/annurev.pa.25.040185.003113

    CAS  PubMed  Google Scholar 

  39. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372:231–236. doi:10.1038/372231a0

    CAS  PubMed  Google Scholar 

  40. Somlyo AP, Himpens B (1989) Cell calcium and its regulation in smooth muscle. FASEB J 3:2266–2276

    CAS  PubMed  Google Scholar 

  41. Hirano K, Phan BC, Hartshorne DJ (1997) Interactions of the subunits of smooth muscle myosin phosphatase. J Biol Chem 272:3683–3688. doi:10.1074/jbc.272.6.3683

    CAS  PubMed  Google Scholar 

  42. Shimizu H, Ito M, Miyahara M, Ichikawa K, Okubo S, Konishi T, Naka M, Tanaka T, Hirano K, Hartshorne DJ (1994) Characterization of the myosin-binding subunit of smooth muscle myosin phosphatase. J Biol Chem 269:30407–30411

    CAS  PubMed  Google Scholar 

  43. Hathaway DR, Adelstein RS (1979) Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci USA 76:1653–1657

    CAS  PubMed  Google Scholar 

  44. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszodi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fassler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051. doi:10.1093/emboj/17.11.3045

    CAS  PubMed  Google Scholar 

  45. Alioua A, Tanaka Y, Wallner M, Hofmann F, Ruth P, Meera P, Toro L (1998) The large conductance, voltage-dependent, and calcium-sensitive K+ channel, Hslo, is a target of cGMP-dependent protein kinase phosphorylation in vivo. J Biol Chem 273:32950–32956. doi:10.1074/jbc.273.49.32950

    CAS  PubMed  Google Scholar 

  46. Swayze RD, Braun AP (2001) A catalytically inactive mutant of type I cGMP-dependent protein kinase prevents enhancement of large conductance, calcium-sensitive K+ channels by sodium nitroprusside and cGMP. J Biol Chem 276:19729–19737. doi:10.1074/jbc.M005711200

    CAS  PubMed  Google Scholar 

  47. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 268:C799–C822

    CAS  PubMed  Google Scholar 

  48. Jiang LH, Gawler DJ, Hodson N, Milligan CJ, Pearson HA, Porter V, Wray D (2000) Regulation of cloned cardiac L-type calcium channels by cGMP-dependent protein kinase. J Biol Chem 275:6135–6143. doi:10.1074/jbc.275.9.6135

    CAS  PubMed  Google Scholar 

  49. Gonzalez JM, Jost LJ, Rouse D, Suki WN (1996) Plasma membrane and sarcoplasmic reticulum Ca-ATPase and smooth muscle. Miner Electrolyte Metab 22:345–348

    CAS  PubMed  Google Scholar 

  50. Cornwell TL, Pryzwansky KB, Wyatt TA, Lincoln TM (1991) Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol 40:923–931

    CAS  PubMed  Google Scholar 

  51. Komalavilas P, Lincoln TM (1996) Phosphorylation of the inositol 1,4,5-trisphosphate receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J Biol Chem 271:21933–21938. doi:10.1074/jbc.271.36.21933

    CAS  PubMed  Google Scholar 

  52. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404:197–201. doi:10.1038/35004606

    CAS  PubMed  Google Scholar 

  53. Nakamura M, Ichikawa K, Ito M, Yamamori B, Okinaka T, Isaka N, Yoshida Y, Fujita S, Nakano T (1999) Effects of the phosphorylation of myosin phosphatase by cyclic GMP-dependent protein kinase. Cell Signal 11:671–676. doi:10.1016/S0898-6568(99)00036-4

    CAS  PubMed  Google Scholar 

  54. Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha. Science 286:1583–1587. doi:10.1126/science.286.5444.1583

    CAS  PubMed  Google Scholar 

  55. Marin-Grez M, Fleming JT, Steinhausen M (1986) Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature 324:473–476. doi:10.1038/324473a0

    CAS  PubMed  Google Scholar 

  56. Tremblay J, Gerzer R, Vinay P, Pang SC, Beliveau R, Hamet P (1985) The increase of cGMP by atrial natriuretic factor correlates with the distribution of particulate guanylate cyclase. FEBS Lett 181:17–22. doi:10.1016/0014-5793(85)81105-4

    CAS  PubMed  Google Scholar 

  57. Sano T, Morishita Y, Matsuda Y, Yamada K (1992) Pharmacological profile of HS-142-1, a novel nonpeptide atrial natriuretic peptide antagonist of microbial origin. I. Selective inhibition of the actions of natriuretic peptides in anesthetized rats. J Pharmacol Exp Ther 260:825–831

    CAS  PubMed  Google Scholar 

  58. Norling LL, Geldern TV, Chevalier RL (1994) Maturation of A71915-dependent inhibition of atrial natriuretic peptide-stimulated cyclic GMP production in isolated rat glomeruli. Biol Neonate 66:294–301

    CAS  PubMed  Google Scholar 

  59. Harris PJ, Thomas D, Morgan TO (1987) Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature 326:697–698. doi:10.1038/326697a0

    CAS  PubMed  Google Scholar 

  60. Light DB, Corbin JD, Stanton BA (1990) Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344:336–339. doi:10.1038/344336a0

    CAS  PubMed  Google Scholar 

  61. Burnett JC Jr, Granger JP, Opgenorth TJ (1984) Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 247:F863–F866

    CAS  PubMed  Google Scholar 

  62. Gambaryan S, Wagner C, Smolenski A, Walter U, Poller W, Haase W, Kurtz A, Lohmann SM (1998) Endogenous or overexpressed cGMP-dependent protein kinases inhibit cAMP-dependent renin release from rat isolated perfused kidney, microdissected glomeruli, and isolated juxtaglomerular cells. Proc Natl Acad Sci USA 95:9003–9008

    CAS  PubMed  Google Scholar 

  63. de Lean A, Racz K, Gutkowska J, Nguyen TT, Cantin M, Genest J (1984) Specific receptor-mediated inhibition by synthetic atrial natriuretic factor of hormone-stimulated steroidogenesis in cultured bovine adrenal cells. Endocrinology 115:1636–1638

    PubMed  Google Scholar 

  64. Chartier L, Schiffrin E, Thibault G, Garcia R (1984) Atrial natriuretic factor inhibits the stimulation of aldosterone secretion by angiotensin II, ACTH and potassium in vitro and angiotensin II-induced steroidogenesis in vivo. Endocrinology 115:2026–2028

    CAS  PubMed  Google Scholar 

  65. Kudo T, Baird A (1984) Inhibition of aldosterone production in the adrenal glomerulosa by atrial natriuretic factor. Nature 312:756–757

    CAS  PubMed  Google Scholar 

  66. MacFarland RT, Zelus BD, Beavo JA (1991) High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem 266:136–142

    CAS  PubMed  Google Scholar 

  67. Cherradi N, Brandenburger Y, Rossier MF, Vallotton MB, Stocco DM, Capponi AM (1998) Atrial natriuretic peptide inhibits calcium-induced steroidogenic acute regulatory protein gene transcription in adrenal glomerulosa cells. Mol Endocrinol 12:962–972

    CAS  PubMed  Google Scholar 

  68. Calle RA, Bollag WB, White S, Betancourt-Calle S, Kent P (2001) ANPs effect on MARCKS and StAR phosphorylation in agonist-stimulated glomerulosa cells. Mol Cell Endocrinol 177:71–79. doi:10.1016/S0303-7207(01)00454-3

    CAS  PubMed  Google Scholar 

  69. Dulak J, Jozkowicz A, mbinska-Kiec A, Guevara I, Zdzienicka A, Zmudzinska-Grochot D, Florek I, Wojtowicz A, Szuba A, Cooke JP (2000) Nitric oxide induces the synthesis of vascular endothelial growth factor by rat vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20:659–666

    CAS  PubMed  Google Scholar 

  70. Chin K, Kurashima Y, Ogura T, Tajiri H, Yoshida S, Esumi H (1997) Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 15:437–442

    CAS  PubMed  Google Scholar 

  71. Hood J, Granger HJ (1998) Protein kinase G mediates vascular endothelial growth factor-induced Raf-1 activation and proliferation in human endothelial cells. J Biol Chem 273:23504–23508. doi:10.1074/jbc.273.36.23504

    CAS  PubMed  Google Scholar 

  72. Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98:2604–2609

    CAS  PubMed  Google Scholar 

  73. Kohno M, Ikeda M, Johchi M, Horio T, Yasunari K, Kurihara N, Takeda T (1993) Interaction of PDGF and natriuretic peptides on mesangial cell proliferation and endothelin secretion. Am J Physiol 265:E673–E679

    CAS  PubMed  Google Scholar 

  74. Itoh H, Pratt RE, Dzau VJ (1990) Atrial natriuretic polypeptide inhibits hypertrophy of vascular smooth muscle cells. J Clin Invest 86:1690–1697. doi:10.1172/JCI114893

    CAS  PubMed  Google Scholar 

  75. Itoh H, Pratt RE, Ohno M, Dzau VJ (1992) Atrial natriuretic polypeptide as a novel antigrowth factor of endothelial cells. Hypertension 19:758–761

    CAS  PubMed  Google Scholar 

  76. Cao L, Gardner DG (1995) Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25:227–234

    CAS  PubMed  Google Scholar 

  77. Pedram A, Razandi M, Kehrl J, Levin ER (2000) Natriuretic peptides inhibit G protein activation. Mediation through cross-talk between cyclic GMP-dependent protein kinase and regulators of G protein-signaling proteins. J Biol Chem 275:7365–7372. doi:10.1074/jbc.275.10.7365

    CAS  PubMed  Google Scholar 

  78. Suhasini M, Li H, Lohmann SM, Boss GR, Pilz RB (1998) Cyclic-GMP-dependent protein kinase inhibits the Ras/mitogen-activated protein kinase pathway. Mol Cell Biol 18:6983–6994

    CAS  PubMed  Google Scholar 

  79. Furuya M, Yoshida M, Hayashi Y, Ohnuma N, Minamino N, Kangawa K, Matsuo H (1991) C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Commun 177:927–931. doi:10.1016/0006-291X(91)90627-J

    CAS  PubMed  Google Scholar 

  80. Furuya M, Aisaka K, Miyazaki T, Honbou N, Kawashima K, Ohno T, Tanaka S, Minamino N, Kangawa K, Matsuo H (1993) C-type natriuretic peptide inhibits intimal thickening after vascular injury. Biochem Biophys Res Commun 193:248–253. doi:10.1006/bbrc.1993.1616

    CAS  PubMed  Google Scholar 

  81. Shinomiya M, Tashiro J, Saito Y, Yoshida S, Furuya M, Oka N, Tanaka S, Kangawa K, Matsuo H (1994) C-type natriuretic peptide inhibits intimal thickening of rabbit carotid artery after balloon catheter injury. Biochem Biophys Res Commun 205:1051–1056. doi:10.1006/bbrc.1994.2772

    CAS  PubMed  Google Scholar 

  82. Ueno H, Haruno A, Morisaki N, Furuya M, Kangawa K, Takeshita A, Saito Y (1997) Local expression of C-type natriuretic peptide markedly suppresses neointimal formation in rat injured arteries through an autocrine/paracrine loop. Circulation 96:2272–2279

    CAS  PubMed  Google Scholar 

  83. Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, Kojima M, Kawano Y, Kangawa K (2003) Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology 144:2279–2284

    CAS  PubMed  Google Scholar 

  84. Kong X, Wang X, Xu W, Behera S, Hellermann G, Kumar A, Lockey RF, Mohapatra S, Mohapatra SS (2008) Natriuretic peptide receptor a as a novel anticancer target. Cancer Res 68:249–256. doi:10.1158/0008-5472

    CAS  PubMed  Google Scholar 

  85. Pollman MJ, Yamada T, Horiuchi M, Gibbons GH (1996) Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Res 79:748–756

    CAS  PubMed  Google Scholar 

  86. Wu CF, Bishopric NH, Pratt RE (1997) Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 272:14860–14866. doi:10.1074/jbc.272.23.14860

    CAS  PubMed  Google Scholar 

  87. Taimor G, Hofstaetter B, Piper HM (2000) Apoptosis induction by nitric oxide in adult cardiomyocytes via cGMP-signaling and its impairment after simulated ischemia. Cardiovasc Res 45:588–594. doi:10.1016/S0008-6363(99)00272-2

    CAS  PubMed  Google Scholar 

  88. Suenobu N, Shichiri M, Iwashina M, Marumo F, Hirata Y (1999) Natriuretic peptides and nitric oxide induce endothelial apoptosis via a cGMP-dependent mechanism. Arterioscler Thromb Vasc Biol 19:140–146

    CAS  PubMed  Google Scholar 

  89. Soh JW, Mao Y, Liu L, Thompson WJ, Pamukcu R, Weinstein IB (2001) Protein kinase G activates the JNK1 pathway via phosphorylation of MEKK1. J Biol Chem 276:16406–16410. doi:10.1074/jbc.C100079200

    CAS  PubMed  Google Scholar 

  90. Soh JW, Mao Y, Kim MG, Pamukcu R, Li H, Piazza GA, Thompson WJ, Weinstein IB (2000) Cyclic GMP mediates apoptosis induced by sulindac derivatives via activation of c-Jun NH2-terminal kinase 1. Clin Cancer Res 6:4136–4141

    CAS  PubMed  Google Scholar 

  91. Li H, Liu L, David ML, Whitehead CM, Chen M, Fetter JR, Sperl GJ, Pamukcu R, Thompson WJ (2002) Pro-apoptotic actions of exisulind and CP461 in SW480 colon tumor cells involve beta-catenin and cyclin D1 down-regulation. Biochem Pharmacol 64:1325–1336. doi:10.1016/S0006-2952(02)01345-X

    CAS  PubMed  Google Scholar 

  92. Ciani E, Guidi S, Bartesaghi R, Contestabile A (2002) Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: implication for a survival role of nitric oxide. J Neurochem 82:1282–1289. doi:10.1046/j.1471-4159.2002.01080.x

    CAS  PubMed  Google Scholar 

  93. Zamora R, Alarcon L, Vodovotz Y, Betten B, Kim PK, Gibson KF, Billiar TR (2001) Nitric oxide suppresses the expression of Bcl-2 binding protein BNIP3 in hepatocytes. J Biol Chem 276:46887–46895. doi:10.1074/jbc.M101865200

    CAS  PubMed  Google Scholar 

  94. Sengenes C, Zakaroff-Girard A, Moulin A, Berlan M, Bouloumie A, Lafontan M, Galitzky J (2002) Natriuretic peptide-dependent lipolysis in fat cells is a primate specificity. Am J Physiol Regul Integr Comp Physiol 283:R257–R265. doi:10.1152/ajpregu.00453.2001

    CAS  PubMed  Google Scholar 

  95. Sengenes C, Bouloumie A, Hauner H, Berlan M, Busse R, Lafontan M, Galitzky J (2003) Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 278:48617–48626. doi:10.1074/jbc.M303713200

    CAS  PubMed  Google Scholar 

  96. Carey GB (1998) Mechanisms regulating adipocyte lipolysis. Adv Exp Med Biol 441:157–170

    CAS  PubMed  Google Scholar 

  97. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511. doi:10.1146/annurev.biochem.76.060305.150444

    CAS  PubMed  Google Scholar 

  98. Sarzani R, Marcucci P, Salvi F, Bordicchia M, Espinosa E, Mucci L, Lorenzetti B, Minardi D, Muzzonigro G, Dessi-Fulgheri P, Rappelli A (2008) Angiotensin II stimulates and atrial natriuretic peptide inhibits human visceral adipocyte growth. Int J Obes (Lond) 32:259–267. doi:10.1038/sj.ijo.0803724

    CAS  Google Scholar 

  99. Jones BH, Standridge MK, Moustaid N (1997) Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 138:1512–1519

    CAS  PubMed  Google Scholar 

  100. Darimont C, Vassaux G, Ailhaud G, Negrel R (1994) Differentiation of preadipose cells: paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. Endocrinology 135:2030–2036

    CAS  PubMed  Google Scholar 

  101. Shi Y, Burn P (2004) Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat Rev Drug Discov 3:695–710. doi:10.1038/nrd1469

    CAS  PubMed  Google Scholar 

  102. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672

    CAS  PubMed  Google Scholar 

  103. Xue B, Greenberg AG, Kraemer FB, Zemel MB (2001) Mechanism of intracellular calcium ([Ca2+]i) inhibition of lipolysis in human adipocytes. FASEB J 15:2527–2529. doi:10.1096/fj.01-0278fje

    CAS  PubMed  Google Scholar 

  104. Garg R, Pandey KN (2003) Angiotensin II-mediated negative regulation of Npr1 promoter activity and gene transcription. Hypertension 41:730–736. doi:10.1161/01.HYP.0000051890.68573.94

    CAS  PubMed  Google Scholar 

  105. Belo NO, Sairam MR, Dos Reis AM (2008) Impairment of the natriuretic peptide system in follitropin receptor knockout mice and reversal by estradiol: implications for obesity-associated hypertension in menopause. Endocrinology 149:1399–1406. doi:10.1210/en.2007-0572

    CAS  PubMed  Google Scholar 

  106. Moro C, Polak J, Hejnova J, Klimcakova E, Crampes F, Stich V, Lafontan M, Berlan M (2006) Atrial natriuretic peptide stimulates lipid mobilization during repeated bouts of endurance exercise. Am J Physiol Endocrinol Metab 290:E864–E869. doi:10.1152/ajpendo.00348.2005

    CAS  PubMed  Google Scholar 

  107. Perez-Matute P, Neville MJ, Tan GD, Frayn KN, Karpe F (2009) Transcriptional control of human adipose tissue blood flow. Obesity (Silver Spring) 17:681–688. doi:10.1038/oby.2008.606

    CAS  Google Scholar 

  108. Birkenfeld AL, Budziarek P, Boschmann M, Moro C, Adams F, Franke G, Berlan M, Marques MA, Sweep FC, Luft FC, Lafontan M, Jordan J (2008) Atrial natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 57:3199–3204. doi:10.2337/db08-0649

    CAS  PubMed  Google Scholar 

  109. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899. doi:10.1126/science.1079368

    CAS  PubMed  Google Scholar 

  110. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PW, Vasan RS (2004) Impact of obesity on plasma natriuretic peptide levels. Circulation 109:594–600. doi:10.1161/01.CIR.0000112582.16683.EA

    CAS  PubMed  Google Scholar 

  111. Rubattu S, Sciarretta S, Ciavarell GM, Venturelli V, De PP, Tocci G, De BL, Ferrucci A, Volpe M (2007) Reduced levels of N-terminal-proatrial natriuretic peptide in hypertensive patients with metabolic syndrome and their relationship with left ventricular mass. J Hypertens 25:833–839. doi:10.1097/HJH.0b013e32803cae3c

    CAS  PubMed  Google Scholar 

  112. Olsen MH, Hansen TW, Christensen MK, Gustafsson F, Rasmussen S, Wachtell K, Borch-Johnsen K, Ibsen H, Jorgensen T, Hildebrandt P (2005) N-terminal pro brain natriuretic peptide is inversely related to metabolic cardiovascular risk factors and the metabolic syndrome. Hypertension 46:660–666. doi:10.1161/01.HYP.0000179575.13739.72

    CAS  PubMed  Google Scholar 

  113. Dessi-Fulgheri P, Sarzani R, Tamburrini P, Moraca A, Espinosa E, Cola G, Giantomassi L, Rappelli A (1997) Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens 15:1695–1699

    CAS  PubMed  Google Scholar 

  114. Sarzani R, Paci VM, Zingaretti CM, Pierleoni C, Cinti S, Cola G, Rappelli A, Dessi-Fulgheri P (1995) Fasting inhibits natriuretic peptides clearance receptor expression in rat adipose tissue. J Hypertens 13:1241–1246

    CAS  PubMed  Google Scholar 

  115. Dessi-Fulgheri P, Sarzani R, Serenelli M, Tamburrini P, Spagnolo D, Giantomassi L, Espinosa E, Rappelli A (1999) Low calorie diet enhances renal, hemodynamic, and humoral effects of exogenous atrial natriuretic peptide in obese hypertensives. Hypertension 33:658–662

    CAS  PubMed  Google Scholar 

  116. Wang TJ, Larson MG, Keyes MJ, Levy D, Benjamin EJ, Vasan RS (2007) Association of plasma natriuretic peptide levels with metabolic risk factors in ambulatory individuals. Circulation 115:1345–1353. doi:10.1161/CIRCULATIONAHA.106.655142

    CAS  PubMed  Google Scholar 

  117. Verspohl EJ, Bernemann IK (1996) Atrial natriuretic peptide (ANP)-induced inhibition of glucagon secretion: mechanism of action in isolated rat pancreatic islets. Peptides 17:1023–1029. doi:10.1016/0196-9781(96)00152-0

    CAS  PubMed  Google Scholar 

  118. Steinhelper ME, Cochrane KL, Field LJ (1990) Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension 16:301–307

    CAS  PubMed  Google Scholar 

  119. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681. doi:10.1126/science.7839143

    CAS  PubMed  Google Scholar 

  120. Wang D, Oparil S, Feng JA, Li P, Perry G, Chen LB, Dai M, John SW, Chen YF (2003) Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension 42:88–95. doi:10.1161/01.CIR.0000112582.16683.EA

    CAS  PubMed  Google Scholar 

  121. Honrath U, Chong CK, Melo LG, Sonnenberg H (1999) Effect of saline infusion on kidney and collecting duct function in atrial natriuretic peptide (ANP) gene “knockout” mice. Can J Physiol Pharmacol 77:454–457

    CAS  PubMed  Google Scholar 

  122. Oliver PM, John SW, Purdy KE, Kim R, Maeda N, Goy MF, Smithies O (1998) Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci USA 95:2547–2551

    CAS  PubMed  Google Scholar 

  123. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735

    CAS  PubMed  Google Scholar 

  124. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68. doi:10.1038/378065a0

    CAS  PubMed  Google Scholar 

  125. Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, Zwiener M, Baba HA, Eickels MV, Schlatter E, Kuhn M (2005) Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 112:2307–2317. doi:10.1161/CIRCULATIONAHA.105.542209

    CAS  PubMed  Google Scholar 

  126. Holtwick R, Eickels MV, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407. doi:10.1172/JCI17061

    CAS  PubMed  Google Scholar 

  127. Holtwick R, Gotthardt M, Skryabin B, Steinmetz M, Potthast R, Zetsche B, Hammer RE, Herz J, Kuhn M (2002) Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc Natl Acad Sci USA 99:7142–7147. doi:10.1073/pnas.102650499

    CAS  PubMed  Google Scholar 

  128. Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, Zwiener M, Baba HA, Yanagisawa M, Kuhn M (2005) Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest 115:1666–1674. doi:10.1172/JCI23360

    CAS  PubMed  Google Scholar 

  129. Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 98:2703–2706. doi:10.1073/pnas.051625598

    CAS  PubMed  Google Scholar 

  130. Ogawa Y, Itoh H, Tamura N, Suga S, Yoshimasa T, Uehira M, Matsuda S, Shiono S, Nishimoto H, Nakao K (1994) Molecular cloning of the complementary DNA and gene that encode mouse brain natriuretic peptide and generation of transgenic mice that overexpress the brain natriuretic peptide gene. J Clin Invest 93:1911–1921. doi:10.1172/JCI117182

    CAS  PubMed  Google Scholar 

  131. Suda M, Ogawa Y, Tanaka K, Tamura N, Yasoda A, Takigawa T, Uehira M, Nishimoto H, Itoh H, Saito Y, Shiota K, Nakao K (1998) Skeletal overgrowth in transgenic mice that overexpress brain natriuretic peptide. Proc Natl Acad Sci USA 95:2337–2342

    CAS  PubMed  Google Scholar 

  132. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97:4239–4244

    CAS  PubMed  Google Scholar 

  133. Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura K, Nakao K, Kurihara T, Komatsu Y, Itoh H, Tanaka K, Saito Y, Katsuki M, Nakao K (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci USA 98:4016–4021. doi:10.1073/pnas.071389098

    CAS  PubMed  Google Scholar 

  134. Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, Miura M, Kurihara T, Rogi T, Tanaka S, Suda M, Tamura N, Ogawa Y, Nakao K (2004) Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 10:80–86. doi:10.1038/nm971

    CAS  PubMed  Google Scholar 

  135. Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL (2004) Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci USA 101:17300–17305. doi:10.1073/pnas.0407894101

    CAS  PubMed  Google Scholar 

  136. Langenickel TH, Buttgereit J, Pagel-Langenickel I, Lindner M, Monti J, Beuerlein K, Al-Saadi N, Plehm R, Popova E, Tank J, Dietz R, Willenbrock R, Bader M (2006) Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. Proc Natl Acad Sci USA 103:4735–4740. doi:10.1073/pnas.0510019103

    CAS  PubMed  Google Scholar 

  137. Matsukawa N, Grzesik WJ, Takahashi N, Pandey KN, Pang S, Yamauchi M, Smithies O (1999) The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci USA 96:7403–7408

    CAS  PubMed  Google Scholar 

  138. Dutil J, Deng AY (2001) Further chromosomal mapping of a blood pressure QTL in Dahl rats on chromosome 2 using congenic strains. Physiol Genomics 6:3–9

    CAS  PubMed  Google Scholar 

  139. Pausova Z, Gaudet D, Gossard F, Bernard M, Kaldunski ML, Jomphe M, Tremblay J, Hudson TJ, Bouchard G, Kotchen TA, Cowley AW, Hamet P (2005) Genome-wide scan for linkage to obesity-associated hypertension in French Canadians. Hypertension 46:1280–1285. doi:10.1161/01.HYP.0000188049.23233.fb

    CAS  PubMed  Google Scholar 

  140. Hamet P, Merlo E, Seda O, Broeckel U, Tremblay J, Kaldunski M, Gaudet D, Bouchard G, Deslauriers B, Gagnon F, Antoniol G, Pausova Z, Labuda M, Jomphe M, Gossard F, Tremblay G, Kirova R, Tonellato P, Orlov SN, Pintos J, Platko J, Hudson TJ, Rioux JD, Kotchen TA, Cowley AW Jr (2005) Quantitative founder-effect analysis of French Canadian families identifies specific loci contributing to metabolic phenotypes of hypertension. Am J Hum Genet 76:815–832. doi:10.1086/430133

    CAS  PubMed  Google Scholar 

  141. Newton-Cheh C, Larson MG, Vasan RS, Levy D, Bloch KD, Surti A, Guiducci C, Kathiresan S, Benjamin EJ, Struck J, Morgenthaler NG, Bergmann A, Blankenberg S, Kee F, Nilsson P, Yin X, Peltonen L, Vartiainen E, Salomaa V, Hirschhorn JN, Melander O, Wang TJ (2009) Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet 41:348–353. doi:10.1038/ng.328

    CAS  PubMed  Google Scholar 

  142. Burnett JC Jr, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS (1986) Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231:1145–1147. doi:10.1126/science.2935937

    PubMed  Google Scholar 

  143. Yandle TG, Richards AM, Gilbert A, Fisher S, Holmes S, Espiner EA (1993) Assay of brain natriuretic peptide (BNP) in human plasma: evidence for high molecular weight BNP as a major plasma component in heart failure. J Clin Endocrinol Metab 76:832–838

    CAS  PubMed  Google Scholar 

  144. Richards AM, Lainchbury JG, Troughton RW, Espiner EA, Nicholls MG (2004) Clinical applications of B-type natriuretic peptides. Trends Endocrinol Metab 15:170–174. doi:10.1016/j.tem.2004.03.005

    CAS  PubMed  Google Scholar 

  145. Makikallio AM, Makikallio TH, Korpelainen JT, Vuolteenaho O, Tapanainen JM, Ylitalo K, Sotaniemi KA, Huikuri HV, Myllyla VV (2005) Natriuretic peptides and mortality after stroke. Stroke 36:1016–1020. doi:10.1161/01.STR.0000162751.54349.ae

    CAS  PubMed  Google Scholar 

  146. Wazni OM, Martin DO, Marrouche NF, Latif AA, Ziada K, Shaaraoui M, Almahameed S, Schweikert RA, Saliba WI, Gillinov AM, Tang WH, Mills RM, Francis GS, Young JB, Natale A (2004) Plasma B-type natriuretic peptide levels predict postoperative atrial fibrillation in patients undergoing cardiac surgery. Circulation 110:124–127. doi:10.1161/01.CIR.0000134481.24511.BC

    CAS  PubMed  Google Scholar 

  147. Doust JA, Pietrzak E, Dobson A, Glasziou P (2005) How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ 330:625–634. doi:10.1136/bmj.330.7492.625

    CAS  PubMed  Google Scholar 

  148. Cusson JR, Thibault G, Cantin M, Larochelle P (1990) Prolonged low dose infusion of atrial natriuretic factor in essential hypertension. Clin Exp Hypertens A 12:111–135

    CAS  PubMed  Google Scholar 

  149. Hirata Y, Ishii M, Sugimoto T, Matsuoka H, Fukui K, Sugimoto T, Yamakado M, Tagawa H, Miyata A, Kangawa K et al (1988) Hormonal and renal effects of atrial natriuretic peptide in patients with secondary hypertension. Circulation 78:1401–1410

    CAS  PubMed  Google Scholar 

  150. Hamet P, Testaert E, Palmour R, Larochelle P, Cantin M, Gutkowska J, Langlois Y, Ervin F, Tremblay J (1989) Effect of prolonged infusion of ANF in normotensive and hypertensive monkeys. Am J Hypertens 2:690–695

    CAS  PubMed  Google Scholar 

  151. Lin KF, Chao J, Chao L (1995) Human atrial natriuretic peptide gene delivery reduces blood pressure in hypertensive rats. Hypertension 26:847–853

    CAS  PubMed  Google Scholar 

  152. Cody RJ, Atlas SA, Laragh JH, Kubo SH, Covit AB, Ryman KS, Shaknovich A, Pondolfino K, Clark M, Camargo MJ et al (1986) Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest 78:1362–1374. doi:10.1172/JCI112723

    CAS  PubMed  Google Scholar 

  153. Fifer MA, Molina CR, Quiroz AC, Giles TD, Herrmann HC, Scheeder ID, Clement DL, Kubo S, Cody RJ, Cohn JN et al (1990) Hemodynamic and renal effects of atrial natriuretic peptide in congestive heart failure. Am J Cardiol 65:211–216

    CAS  PubMed  Google Scholar 

  154. Weder AB, Sekkarie MA, Takiyyuddin M, Schork NJ, Julius S (1987) Antihypertensive and hypotensive effects of atrial natriuretic factor in men. Hypertension 10:582–589

    CAS  PubMed  Google Scholar 

  155. Kitashiro S, Sugiura T, Takayama Y, Tsuka Y, Izuoka T, Tokunaga S, Iwasaka T (1999) Long-term administration of atrial natriuretic peptide in patients with acute heart failure. J Cardiovasc Pharmacol 33:948–952

    CAS  PubMed  Google Scholar 

  156. Hobbs RE, Miller LW, Bott-Silverman C, James KB, Rincon G, Grossbard EB (1996) Hemodynamic effects of a single intravenous injection of synthetic human brain natriuretic peptide in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 78:896–901. doi:10.1016/S0002-9149(96)00464-X

    CAS  PubMed  Google Scholar 

  157. Colucci WS, Elkayam U, Horton DP, Abraham WT, Bourge RC, Johnson AD, Wagoner LE, Givertz MM, Liang CS, Neibaur M, Haught WH, LeJemtel TH (2000) Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med 343:246–253

    CAS  PubMed  Google Scholar 

  158. Rayburn BK, Bourge RC (2001) Nesiritide: a unique therapeutic cardiac peptide. Rev Cardiovasc Med 2(Suppl 2):S25–S31

    PubMed  Google Scholar 

  159. Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K (2005) Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA 293:1900–1905

    CAS  PubMed  Google Scholar 

  160. Sackner-Bernstein JD, Skopicki HA, Aaronson KD (2005) Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111:1487–1491. doi:10.1161/01.CIR.0000159340.93220.E4

    CAS  PubMed  Google Scholar 

  161. Corti R, Burnett JC Jr, Rouleau JL, Ruschitzka F, Luscher TF (2001) Vasopeptidase inhibitors: a new therapeutic concept in cardiovascular disease? Circulation 104:1856–1862. doi:10.1161/hc4001.097191

    CAS  PubMed  Google Scholar 

  162. Campese VM, Lasseter KC, Ferrario CM, Smith WB, Ruddy MC, Grim CE, Smith RD, Vargas R, Habashy MF, Vesterqvist O, Delaney CL, Liao WC (2001) Omapatrilat versus lisinopril: efficacy and neurohormonal profile in salt-sensitive hypertensive patients. Hypertension 38:1342–1348. doi:10.1161/hy1201.096569

    CAS  PubMed  Google Scholar 

  163. Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E (2004) Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens 17:103–111

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanne Tremblay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martel, G., Hamet, P. & Tremblay, J. Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem 334, 53–65 (2010). https://doi.org/10.1007/s11010-009-0326-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0326-8

Keywords

Navigation