Skip to main content
Log in

Linear Combination of Independent Exponential Random Variables

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper we prove a recursive identity for the cumulative distribution function of a linear combination of independent exponential random variables. The result is then extended to probability density function, expected value of functions of a linear combination of independent exponential random variables, and other functions. Our goal is on the exact and approximate calculation of the above mentioned functions and expected values. We study this computational problem from different views, namely as a Hermite interpolation problem, and as a matrix function evaluation problem. Examples are presented to illustrate the applicability and performance of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amari SV, Misra RB (1997) Closed-form expressions for distribution of sum of exponential random variables. IEEE Trans Reliab 46:519–522

    Article  Google Scholar 

  • Anjum B, Perros H (2011) Adding percentiles of Erlangian distributions. IEEE Commun Lett 15:346–348

    Article  Google Scholar 

  • Bekker R, Koeleman PM (2011) Scheduling admissions and reducing variability in bed demand. Health Care Manag Sci 14:237–249

    Article  Google Scholar 

  • Buchholz P, Kriege J, Felko I (2014) Input modeling with phase-type distributions and markov models: theory and applications. Springer, Cham

    Book  MATH  Google Scholar 

  • Cox DR (1962) Renewal Theory. Methuen and Co

  • Davies PI, Higham NJ (2003) A Schur-Parlett algorithm for computing matrix functions. SIAM J Matrix Anal Appl 25:464–485

    Article  MathSciNet  MATH  Google Scholar 

  • Davis C (1973) Explicit functional calculus. Lin Alg Applic 6:193–199

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Hajarian M (2009) Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite. J Comput Appl Math 231:67–81

    Article  MathSciNet  MATH  Google Scholar 

  • Descloux J (1963) Bounds for the spectral norm of functions of matrices. Numer Math 5:185–190

    Article  MathSciNet  MATH  Google Scholar 

  • Favaro S, Walker SG (2010) On the distribution of sums of independent exponential random variables via Wilks’ integral representation. Acta Appl Math 109:1035–1042

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol II. Wiley, New York

    MATH  Google Scholar 

  • Gershinsky M, Levine DA (1964) Aitken-hermite interpolation. JACM 11:352–356

    Article  MathSciNet  MATH  Google Scholar 

  • Gertsbakh I, Neuman E, Vaisman R (2015) Monte Carlo for estimating exponential convolution. Comm Statist Simulation Comput 44:2696–2704

    Article  MathSciNet  Google Scholar 

  • Goulet V, Dutang C, Maechler M, Firth D, Shapira M, Stadelmann M, expm-developers@lists.R-forge.R-project.org (2015) expm: Matrix Exponential. R package version 0.999-0. https://CRAN.R-project.org/package=expm

  • Higham NJ (1993) The accuracy of floating point summation. SIAM J Sci Comput 14:783–799

    Article  MathSciNet  MATH  Google Scholar 

  • Higham NJ (2008) Functions of matrices: theory and computation. SIAM

  • Higham NJ, Al-Mohy AH (2010) Computing matrix functions. Acta Numerica 19:159–208. https://doi.org/10.1017/S0962492910000036

    Article  MathSciNet  MATH  Google Scholar 

  • Jasiulewicz H, Kordecki W (2003) Convolutions of Erlang and of Pascal distributions with applications to reliability. Demonstratio Math 36:231–238

    MathSciNet  MATH  Google Scholar 

  • Kadri T, Smaili K (2014) The exact distribution of the ratio of two independent hypoexponential random variables. British J Math Computer Sci 4:2665–2675

    Article  Google Scholar 

  • Kadri T, Smaili K, Kadry S (2015) Markov modeling for reliability analysis using hypoexponential distribution. In: Kadry S, El Hami A (eds) Numerical methods for reliability and safety assessment: multiscale and multiphysics systems. Springer, Switzerland, pp 599–620

  • Khuong HV, Kong H-Y (2006) General expression for pdf of a sum of independent exponential random variables. IEEE Commun Lett 10:159–161

    Article  Google Scholar 

  • Kordecki W (1997) Reliability bounds for multistage structures with independent components. Statist Probab Lett 34:43–51

    Article  MathSciNet  MATH  Google Scholar 

  • Kotz S, Kozubowski TJ, Podgórski K (2001) The laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Birkhäuser, Boston

  • Legros B, Jouini O (2015) A linear algebraic approach for the computation of sums of Erlang random variables. Appl Math Model 39:4971–4977

    Article  MathSciNet  Google Scholar 

  • Macleod AJ (1982) A comparison of algorithms for polynomial interpolation. J Comput Appl Math 8:275–277

    Article  MATH  Google Scholar 

  • Maechler M (2015) Rmpfr: R MPFR - multiple precision Floating-Point reliable. R package version 0.6–0. https://CRAN.R-project.org/package=Rmpfr

  • Mathai AM (1982) Storage capacity of a dam with Gamma type inputs. Ann Inst Statist Math 34:591–597

    Article  MathSciNet  MATH  Google Scholar 

  • Moler C, Van Loan C (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev 45:3–49

    Article  MathSciNet  MATH  Google Scholar 

  • Ogita T, Rump SM, Oishi S (2005) Accurate sum and dot product. SIAM J Sci Comput 26:1955–1988

    Article  MathSciNet  MATH  Google Scholar 

  • Parlett BN (1976) A recurrence among the elements of functions of triangular matrices. Lin Alg Applic 14:117–121

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

  • Ratanov N (2015) Hypo-exponential distributions and compound Poisson process with alternating parameters. Statist Probab Lett 107:71–78

    Article  MathSciNet  MATH  Google Scholar 

  • Ross SM (2014) Introduction to probability models, 11th edn. Academic Press, San Diego

    MATH  Google Scholar 

  • Scheuer EM (1988) Reliability of an m-out-of-n system when component failure induces higher failure rates in survivors. IEEE Trans Reliab 37:73–74

    Article  MATH  Google Scholar 

  • Shao H, Beaulieu NC (2012) An investigation of block coding for Laplacian noise. IEEE Trans Wireless Commun 11:2362–2372

    Article  Google Scholar 

  • Smaili K, Kadri T, Kadry S (2013) Hypoexponential distribution with different parameters. Appl Math 4:624–631

    Article  Google Scholar 

  • Smaili K, Kadri T, Kadry S (2014) A modified-form expressions for the hypoexponential distribution. British J Math Computer Sci 4:322–332

    Article  Google Scholar 

  • Van Loan CF (1975) A study of the matrix exponential. Numerical Analysis Report No. 10 Department of Mathematics. University of Manchester, England

    Google Scholar 

  • Wen YZ, Yin CC (2014) A generalized Erlang(n) risk model with a hybrid dividend strategy (in Chinese). Sci Sin Math 44:1111–1122

    Google Scholar 

  • Yin M -L, Angus JE, Trivedi KS (2013) Optimal preventive maintenance rate for best availability with hypo-exponential failure distribution. IEEE Trans Reliab 62:351–361

    Article  Google Scholar 

Download references

Acknowledgements

The work of the second author was done when he was with the Department of Electrical Engineering, Stanford University, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim-Hung Li.

Appendix: Pseudo-Code for Computing Coefficient of H G,k(β i) for Given i:

Appendix: Pseudo-Code for Computing Coefficient of H G,k(β i) for Given i:

Let n be the size of β. Find m, the multiplicity of βiin β.

Find a which is the subvector of β with all m replications of β i removed.

Set Jem,m.

If (m = n), return J as the vector of coefficients for (HG,1(βi),…,HG,m(βi)).

Set dβi.

For j = nm downto 1, do { Set q ← 0.

For k = m downto 1, do { Set Jk ← (dJkβiq)/(ajβi). Set qJk. }

Set daj. }

Return (a1J/βi) as the vector of coefficients for (HG,1(βi),…,HG,m(βi)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, KH., Li, C.T. Linear Combination of Independent Exponential Random Variables. Methodol Comput Appl Probab 21, 253–277 (2019). https://doi.org/10.1007/s11009-018-9653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-018-9653-0

Keywords

Mathematics Subject Classification (2010)

Navigation