Skip to main content
Log in

Thermo-elastic damping in a functionally graded piezoelectric micro-resonator

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The present study investigates the thermo-elastic damping (TED) of transversal vibration in a functionally graded piezoelectric (FGP) micro-beam resonator. The model is a functionally graded silicon-piezoelectric fully clamped micro beam exposed to a DC piezoelectric tuning voltage. The object is to propose a novel FGP MEM system, with a controllable thermo-elastic damping. It is shown that the functionality of the material distribution not only reduces the TED ratio, but also enables tuning the resonance frequency of the resonator due to the piezoelectric actuation. The effects of portion of piezoelectric material, geometrical dimensions, the ambient temperature and tuning DC voltage, on the quality factor of the flexural vibrations of the structure is analyzed through solving the thermo elastically coupled dynamic equations of the motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alibeigloo, A.: Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers. Compos. Struct. 92(6), 1535–1543 (2010)

    Article  Google Scholar 

  • Azizi, S., Ghazavi, M.-R., Esmaeilzadeh Khadem, S., Jie, Y., Ghader, R.: Stability analysis of a parametrically excited functionally graded piezoelectric MEM system. Curr. Appl. Phys. 12(2), 456–466 (2011a)

    Article  Google Scholar 

  • Azizi, S., Rerzazadeh, G., Ghazavi, M.R., Khadem, S.E.: Parametric excitation of a piezoelectricaly actuated system near hopf bifurcation. Appl. Math. Model. 36, 1529–1549 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Azizi, S., Rezazadeh, G., Ghazavi, M.-R., Khadem, S.E.: Stabilizing the pull-in instability of an electro-statically actuated micro-beam using piezoelectric actuation. Appl. Math. Model. 35(10), 4796–4815 (2011b)

    Article  MATH  Google Scholar 

  • Basak, A., Nandakumar, K., Chatterjee, A.: Decoupled three-dimensional finite element computation of thermoelastic damping using Zener’s approximation. Meccanica 46(2), 371–381 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Belardinelli, P., Brocchini, M., Demeio, L., Lenci, S.: Dynamical characteristics of an electrically actuated microbeam under the effects of squeeze-film and thermoelastic damping. Int. J. Eng. Sci. 69, 16–32 (2013)

    Article  MathSciNet  Google Scholar 

  • Duwel, A., Gorman, J., Weinstein, M., Borenstein, J., Ward, P.: Experimental study of thermoelastic damping in MEMS gyros. Sens. Actuators, A 103(1–2), 70–75 (2003)

    Article  Google Scholar 

  • Ghazavi, M.-R., Rezazadeh, G., Azizi, S.: Pure parametric excitation of a micro cantilever beam actuated by piezoelectric layers. Appl. Math. Model. 34(12), 4196–4207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, F.L., Rogerson, G.A.: Thermoelastic coupling effect on a micro-machined beam resonator. Mech. Res. Commun. 30(6), 513–518 (2003)

    Article  MATH  Google Scholar 

  • Hao, Z., Xu, Y., Durgam, S.K.: A thermal-energy method for calculating thermoelastic damping in micromechanical resonators. J. Sound Vib. 322(4–5), 870–882 (2009)

    Article  Google Scholar 

  • Künzig, T., Niessner, M., Wachutka, G., Schrag, G., Hammer, H.: The effect of thermoelastic damping on the total Q-factor of state of-the-art MEMS gyroscopes with complex beam-like suspensions. Procedia Eng. 5, 1296–1299 (2010)

    Article  Google Scholar 

  • Lepage, S.: Stochastic Finite Element Method for the Modeling of Thermoelastic Damping in Micro-Resonators. Cranfield University, Cranfield (2006)

    Google Scholar 

  • Li, Y., Meguid, S.A., Yiming, F., Daolin, X.: Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, (2013)

  • Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61(8), 5600 (2000b)

    Article  Google Scholar 

  • Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000a)

    Article  Google Scholar 

  • Lin, S.-M.: Analytical solutions for thermoelastic vibrations of beam resonators with viscous damping in non-Fourier model. Int. J. Mech. Sci. 87, 26–35 (2014)

    Article  Google Scholar 

  • Lu, P., Lee, H.P., Lu, C., Chen, H.B.: Thermoelastic damping in cylindrical shells with application to tubular oscillator structures. Int. J. Mech. Sci. 50(3), 501–512 (2008)

    Article  MATH  Google Scholar 

  • Meguid, S.A., Al Jahwari, F.: Modeling the pullout test of nanoreinforced metallic matrices using molecular dynamics. Acta Mech. 225, 1267–1275 (2014)

    Article  MATH  Google Scholar 

  • Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, A.-M., Minaei, S., Habibifar, R.: On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos. Struct. 93(6), 1516–1525 (2011)

    Article  Google Scholar 

  • Muller, C., Baborowski, J., Pezous, A., Dubois, M.A.: Experimental evidence of thermoelastic damping in silicon tuning fork. Procedia Chem. 1(1), 1395–1398 (2009)

    Article  Google Scholar 

  • Méndez, C., Paquay, S., Klapka, I., Raskin, J.P.: Effect of geometrical nonlinearity on MEMS thermoelastic damping. Nonlinear Anal. 10(3), 1579–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Nayfeh, A.H., Younis, M.I.: Modeling and simulation of thermoelastic damping in microplates. Micromech. Microeng. 43, 2398–2404 (2004b)

    Google Scholar 

  • Nayfeh, A.H., Younis, M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14, 1711–1717 (2004a)

    Article  Google Scholar 

  • Prabhakar, S., Vengallatore, S.: Thermoelastic damping in bilayered micromechanical beam resonators. J. Micromech. Microeng. 17, 532–538 (2007)

    Article  Google Scholar 

  • Sharma, J.N., Grover, D.: Thermoelastic vibrations in micro-/nano-scale beam resonators with voids. J. Sound Vib. 330(12), 2964–2977 (2011)

    Article  Google Scholar 

  • Sonia, A., Ghader, R., Rasool, S., Ahmadi, G., Toloei, A.: On the stability of a microbeam conveying fluid considering modified couple stress theory. Int. J. Mech. Mater. Des. 7(4), 327–342 (2011)

    Article  Google Scholar 

  • Sun, Y., Fang, D., Soh, A.K.: Thermoelastic damping in micro-beam resonators. Int. J. Solids Struct. 43(10), 3213–3229 (2006)

    Article  MATH  Google Scholar 

  • Tariq, D., Nadir, Y., Mohammad, B.: Transient thermoelasticity analysis of functionally graded thick hollow cylinder based on Green–Lindsay model. Int. J. Mech. Mater. Des. 8(3), 247–255 (2012)

    Article  Google Scholar 

  • Vahdat, A.S., Rezazadeh, G.: Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators. J. Frankl. Inst. 348(4), 622–639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Vahdat, A.S., Rezazadeh, G., Ahmadi, G.: Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers. Acta Mech. Solida Sin. 25(1), 73–81 (2012)

    Article  Google Scholar 

  • Vengallatore, S.: Analysis of thermoelastic damping in laminated composite micromechanical beam resonators. J. Micromech. Microeng. 15, 2398–2404 (2005)

    Article  Google Scholar 

  • Yan, T., Kitipornchai, S., Yang, J.: Parametric instability of functionally graded beams with an open edge crack under axial pulsating excitation. Compos. Struct. 93(7), 1801–1808 (2011)

    Article  Google Scholar 

  • Yi, Y.B.: Geometric effects on thermoelastic damping in MEMS resonators. J. Sound Vib. 309(3–5), 588–599 (2008)

    Article  Google Scholar 

  • Yingli, L., Meguid, S.A., Yiming, F., Daolin, X.: Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches. Acta Mech. 224, 1741–1755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Younis, M.I.: Modeling and Simulation of Microelectromechanical Systems in Multi-Physics Fields, in Mechanical Engineering Department. Virginia Polytechnic Institute and State University, Blacksburg (2004)

    Google Scholar 

  • Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 1, p. 453. Springer, Binghamton (2010)

    Google Scholar 

  • Zamanian, M., Khadem, S.E.: Analysis of thermoelastic damping in microresonators by considering the stretching effect. Int. J. Mech. Sci. 52(10), 1366–1375 (2010)

    Article  Google Scholar 

  • Zener, C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52(3), 230 (1937)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, S., Ghazavi, MR., Rezazadeh, G. et al. Thermo-elastic damping in a functionally graded piezoelectric micro-resonator. Int J Mech Mater Des 11, 357–369 (2015). https://doi.org/10.1007/s10999-014-9285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9285-7

Keywords

Navigation