Skip to main content
Log in

Linear independence of certain sums of reciprocals of the Lucas numbers

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let \(h\ge 3\) and i be integers with \(1\le i\le h-1\). In this paper, we give linear independence results for the values of the functions

$$\begin{aligned} g_{h,i}(z):=\sum _{n=1}^{\infty }\frac{z^{in}-z^{(h-i)n}}{1-z^{hn}} , \quad |z|<1, \end{aligned}$$

at suitable algebraic points. As an application, we deduce arithmetical properties of certain sums of reciprocals of linear recurrence sequences. For example, the six numbers

$$\begin{aligned} 1,\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}},\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}+1},\quad \sum _{n=1}^{\infty }\frac{1}{L_{2n}-1},\quad \sum _{n=1}^{\infty }\frac{1}{L_{4n}},\quad \sum _{n=1}^{\infty }\frac{1}{L_{4n}-1} \end{aligned}$$

are linearly independent over the field \({\mathbb {Q}}\left( \sqrt{5}\right) \), where \(\{L_{n}\}_{n\ge 0}\) is the classical Lucas sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Almkvist, A solution to a tantalizing problem. Fibonacci Q. Quart. 24, 316–322 (1986)

    MathSciNet  MATH  Google Scholar 

  2. R. André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes. C. R. Acad. Sci. Paris 308, 539–541 (1989)

    MathSciNet  MATH  Google Scholar 

  3. R. P. Backstrom, On reciprocal series related to Fibonacci numbers with subscripts in arithmetic progression. Fibonacci Q. 19, 14–21 (1981)

  4. D. Bertrand, Theta functions and transcendence. Ramanujan J. 1, 339–350 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-P. Bézivin, Irrationalité de certaines sommes de séries. Manuscripta Math. 126, 41–47 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Bundschuh, K. Väänänen, Arithmetical investigations of a certain infinite product. Compos. Math. 91, 175–199 (1994)

    MathSciNet  MATH  Google Scholar 

  7. P. Bundschuh, Arithmetical investigations of particular Wynn power series. Hardy-Ramanujan J. 31, 14–27 (2008)

    MathSciNet  MATH  Google Scholar 

  8. P. Bundschuh, K. Väänänen, Quantitative linear independence of an infinite product and its derivatives. Manuscripta Math. 129, 423–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Chowla, On series of the Lambert type which assume irrational values for rational values of the argument. Proc. Natl. Inst. Sci. India Part A 13, 171–173 (1947)

    MathSciNet  MATH  Google Scholar 

  10. D. Duverney, Propriétés arithmétiques d’une série liée aux fonctions thêta. Acta Arith. 64, 175–188 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Duverney, Ke. Nishioka, Ku. Nishioka, I. Shiokawa, Transcendence of Jacobi’s theta series, Proc. Jpn. Acad. Ser. A Math. Sci. 72, 202–203 (1996)

  12. D. Duverney, Some arithmetical consequences of Jacobi’s triple product identity. Math. Proc. Camb. Philos. Soc. 122, 393–399 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Duverney, Ke. Nishioka, Ku. Nishioka, I. Shiokawa, Transcendence of Jacobi’s theta series and related results, in Number Theory, ed. by K. Győry, A. Pethő, V. T. Sós (de Gruyter, Berlin, 1998)

  14. D. Duverney, Y. Suzuki, Y. Tachiya, Linear independence results for sums of reciprocals of Fibonacci and Lucas numbers. Acta Math. Hung. 162, 375–392 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Duverney, Y. Tachiya, Linear independence of infinite products generated by the Lucas numbers. Fibonacci Q. 58, 115–127 (2020)

    MathSciNet  MATH  Google Scholar 

  16. H. Ei, F. Luca, Y. Tachiya, Linear independence results for the reciprocal sums of Fibonacci numbers associated with Dirichlet characters. Studia Sci. Math. Hung. 54, 61–81 (2017)

    MathSciNet  MATH  Google Scholar 

  17. C. Elsner, F. Luca, Y. Tachiya, Algebraic results for the values \(\vartheta _{3}(m\tau )\) and \(\vartheta _{3}(n\tau )\) of the Jacobi theta-constant. Mosc. J. Comb. Number Theory 8, 71–79 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Elsner, M. Kaneko, Y. Tachiya, Algebraic independence results for the values of the theta-constants and some identities. J. Ramanujan Math. Soc. 35, 71–80 (2020)

    MathSciNet  MATH  Google Scholar 

  19. P. Erdős, On arithmetical properties of Lambert series. J. Indian Math. Soc. (N.S.) 12, 63–66 (1948)

    MathSciNet  MATH  Google Scholar 

  20. G. Gasper, M. Rahman, Basic Hypergeometric Series (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  21. G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 6th edn. (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  22. D. R. Heath-Brown, Zero-free regions for Dirichlet \(L\)-functions, and the least prime in an arithmetic progression. Proc. Lond. Math. Soc. 64, 265–338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ju.V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math. [Mat. Sbornik] N.S. 15(57), 139–178 (1944)

  24. Ju.V. Linnik, On the least prime in an arithmetic progression. II. The Deuring–Heilbronn phenomenon. Rec. Math. [Mat. Sbornik] N.S. 15(57), 347–368 (1944)

  25. F. Luca, Y. Tachiya, Irrationality of Lambert series associated with a periodic sequence. Int. J. Number Theory 10, 623–636 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Matala-Aho, K. Väänänen, On approximation measures of \(q\)-logarithms. Bull. Austral. Math. Soc. 58, 15–31 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Matala-Aho, M. Prévost, Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers. Ramanujan J. 11, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu.V. Nesterenko, Modular functions and transcendence questions. Mat. Sb. 187, 65–96; English transl. Sb. Math. 187, 1319–1348 (1996)

  29. Yu.V. Nesterenko, Algebraic Independence (Narosa Publishing House, New Delhi, 2009)

  30. Y. Tachiya, Irrationality of certain Lambert series. Tokyo J. Math. 27, 75–85 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the referees for their careful reading and valuable suggestions, which made this paper more accurate and readable. In particular, the authors are grateful to the anonymous referee who suggested to them Theorem 1.3 and Corollary 1.8 as well as the proofs, thus covering and extending some of the results obtained in the first version of this paper. This work was partly supported by JSPS KAKENHI Grant Number JP18K03201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Tachiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duverney, D., Tachiya, Y. Linear independence of certain sums of reciprocals of the Lucas numbers. Period Math Hung 86, 378–394 (2023). https://doi.org/10.1007/s10998-022-00478-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-022-00478-2

Keywords

Mathematics Subject Classification

Navigation