Skip to main content
Log in

Falsification-Aware Semantics and Sequent Calculi for Classical Logic

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

In this study, falsification-aware semantics and sequent calculi for first-order classical logic are introduced and investigated. These semantics and sequent calculi are constructed based on a falsification-aware setting for first-order Nelson constructive three-valued logic (N3). In fact, these semantics and sequent calculi are regarded as those for a classical variant of N3 (i.e., a classical variant of N3 is identical to first-order classical logic). The completeness and cut-elimination theorems for the proposed semantics and sequent calculi are proved using Schütte’s method. Similar results for the propositional case are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almukdad, A., & Nelson, D. (1984). Constructible falsity and inexact predicates. Journal of Symbolic Logic, 49(1), 231–233.

    Article  Google Scholar 

  2. Arieli, O., & Avron, A. (1996). Reasoning with logical bilattices. Journal of Logic, Language and Information, 5, 25–63.

    Article  Google Scholar 

  3. Arieli, O., & Avron, A. (1998). The value of the four values. Artificial Intelligence, 102(1), 97–141.

    Article  Google Scholar 

  4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2003). Counterexample-guided abstraction refinement for symbolic model checking. Journal of the ACM, 50(5), 752–794.

    Article  Google Scholar 

  5. Czermak, J. (1977). A remark on Gentzen’s calculus of sequents. Notre Dame Journal of Formal Logic, 18, 471–474.

    Article  Google Scholar 

  6. Gentzen, G. (1969). Collected papers of Gerhard Gentzen. In M.E. Szabo (Ed.) Studies in logic and the foundations of mathematics: North-Holland (English translation).

  7. Goodman, N.D. (1981). The logic of contradiction. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 27, 119–126.

    Article  Google Scholar 

  8. Gurevich, Y. (1977). Intuitionistic logic with strong negation. Studia Logica, 36, 49–59.

    Article  Google Scholar 

  9. Gurfinkel, A., Wei, O., & Chechik, M. (2006). Yasm: a software model-checker for verification and refutation. Proceedings of the 18th International Conference on Computer Aided Verification (CAV, 2006, 170–174.

    Article  Google Scholar 

  10. Horn, L.R., & Wansing, H. (2017). Negation, The Stanford encyclopedia of philosophy (Spring Edition). In E.N. Zalta (Ed.). Last modified on January 2017 https://plato.stanford.edu/archives/spr2017/entries/negation/.

  11. Kamide, N. (2021). Cut-elimination, completeness, and Craig interpolation theorems for Gurevich’s extended first-order intuitionistic logic with strong negation. Journal of Applied Logics: IfColog Journal of Logics and their Applications, 8(5), 1101–1122.

    Google Scholar 

  12. Kamide, N., & Wansing, H. (2012). Proof theory of Nelson’s paraconsistent logic: A uniform perspective. Theoretical Computer Science, 415, 1–38.

    Article  Google Scholar 

  13. Kamide, N., & Wansing, H. (2015). Proof theory of N4-related paraconsistent logics. Studies in Logic. College Publications, 54, 1–401.

    Google Scholar 

  14. Łukowski, P. (2002). A deductive-reductive form of logic: General theory and intuitionistic case. Logic and Logical Philosophy, 10, 59–78.

    Article  Google Scholar 

  15. Nelson, D. (1949). Constructible falsity. Journal of Symbolic Logic, 14, 16–26.

    Article  Google Scholar 

  16. Odintsov, S.P. (2002). On the embedding of Nelson’s logics. Bulletin of the Section of Logic, 31(4), 241–248.

    Google Scholar 

  17. Ono, H. (1994). Logic for information science (in Japanese), Nihon Hyouron Shya 297 pages.

  18. Rauszer, C. (1974). A formalization of the propositional calculus of H-B logic. Studia Logica, 33, 23–34.

    Article  Google Scholar 

  19. Rauszer, C. (1977). Applications of Kripke models to Heyting-Brouwer logic. Studia Logica, 36, 61–71.

    Article  Google Scholar 

  20. Rauszer, C., & An, algebraic. (1980). Kripke-style approach to a certain extension of intuitionistic logic Dissertations Mathematicae. Polish Scientific Publishers, 1–67.

  21. Rautenberg, W. (1979). Klassische und nicht-klassische Aussagenlogik. Braunschweig: Vieweg.

    Book  Google Scholar 

  22. Seki, T. (2001). Some remarks on Maehara’s method. Bulletin of the Section of Logic, 30(3), 147–154.

    Google Scholar 

  23. Shramko, Y., & logic, Dual intuitionistic (2005). A variety of negations: The logic of scientific research. Studia Logica, 80(2-3), 347–367.

    Article  Google Scholar 

  24. Takeuti, G. (2013). Proof theory, 2nd edn. New York: Dover Publications, Inc. Mineola.

    Google Scholar 

  25. Thomason, R.H. (1969). A semantical study of constructible falsity. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 15, 247–257.

    Article  Google Scholar 

  26. Urbas, I. (1996). Dual-intuitionistic logic. Notre Dame Journal of Formal Logic, 37(3), 440–451.

    Article  Google Scholar 

  27. Vorob’ev, N.N. (1952). A constructive propositional calculus with strong negation (in Russian). Doklady Akademii Nauk SSSR, 85, 465–468.

    Google Scholar 

  28. Wansing, H. (1993). The logic of information structures. Lecture Notes in Artificial Intelligence, 681, 163.

    Google Scholar 

  29. Wansing, H. (2016). Falsification, natural deduction and bi-intuitionistic logic. Journal of Logic and Computation, 26(1), 425–450.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for their valuable comments. This research was supported by JSPS KAKENHI Grant Numbers JP18K11171 and JP16KK0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Kamide.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamide, N. Falsification-Aware Semantics and Sequent Calculi for Classical Logic. J Philos Logic 51, 99–126 (2022). https://doi.org/10.1007/s10992-021-09611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-021-09611-x

Keywords

Navigation