Skip to main content

Advertisement

Log in

Robust estimation for panel count data with informative observation times and censoring times

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

We consider the semiparametric regression of panel count data occurring in longitudinal follow-up studies that concern occurrence rate of certain recurrent events. The analysis of panel count data involves two processes, i.e, a recurrent event process of interest and an observation process controlling observation times. However, the model assumptions of existing methods, such as independent censoring time and Poisson assumption, are restrictive and questionable. In this paper, we propose new joint models for panel count data by considering both informative observation times and censoring times. The asymptotic normality of the proposed estimators are established. Numerical results from simulation studies and a real data example show the advantage of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews DF, Agnes MH (2012) Data: a collection of problems from many fields for the student and research worker. Springer, Berlin

    Google Scholar 

  • Cai J, Schaubel DE (2004) Analysis of recurrent event data. Handbook of statistics 23:603–623

    Article  MathSciNet  Google Scholar 

  • Diggle PJ, Liang KY, Zeger SL (1994) The analysis of longitudinal data. Oxford University Press, Oxford

    Google Scholar 

  • He X, Tong X, Sun J (2009) Semiparametric analysis of panel count data with correlated observation and follow-up times. Lifetime Data Anal 15:177–196

    Article  MathSciNet  Google Scholar 

  • Hu XJ, Sun J, Wei LJ (2003) Regression parameter estimation from panel counts. Scand J Stat 30:25–43

    Article  MathSciNet  Google Scholar 

  • Huang CY, Wang MC (2004) Joint modeling and estimation for recurrent event processes and failure time data. J Am Stat Assoc 99:1153–1165

    Article  MathSciNet  Google Scholar 

  • Huang CY, Wang MC, Zhang Y (2006) Analysing panel count data with informative observation times. Biometrika 93:763–775

    Article  MathSciNet  Google Scholar 

  • Jiang B, Li J, Fine J (2018) On two-step residual inclusion estimator for instrument variable additive hazards model. Biostat Epidemiol 2:47–60

    Article  Google Scholar 

  • Lagakos SW (1979) General right censoring and its impact on the analysis of survival data. Biometrics 35:139–156

    Article  Google Scholar 

  • Li Y, He X, Wang H, Zhang B, Sun J (2015) Semiparametric regression of multivariate panel count data with informative observation times. J Multivar Anal 140:209–219

    Article  MathSciNet  Google Scholar 

  • Liang Y, Lu W, Ying Z (2009) Joint modeling and analysis of longitudinal data with informative observation times. Biometrics 65:377–384

    Article  MathSciNet  Google Scholar 

  • Lin DY, Ying Z (1997) Additive hazards regression models for survival data. In: Proceedings of the first seattle symposium in biostatitics: survival analysis. Spinger

  • Lin DY, Ying Z (2001) Semiparametric and nonparametric regression analysis of longitudinal data. J Am Stat Assoc 96:103–126

    Article  MathSciNet  Google Scholar 

  • Lin DY, Wei LJ, Yang I, Ying Z (2000) Semiparametric regression for the mean and rate function of recurrent events. J R Stat Soc B 69:711–730

    Article  MathSciNet  Google Scholar 

  • Liu K, Zhao X (2015) Robust estimation for longitudinal data with informative observation times. Can J Stat 43:519–533

    Article  MathSciNet  Google Scholar 

  • Lu M, Zhang Y, Huang J (2007) Estimation of the mean function with panel count data using monotone polynomial splines. Biometrika 94:1–14

    Article  MathSciNet  Google Scholar 

  • Song X, Mu X, Sun L (2012) Regression analysis of longitudinal data with time-dependent covariates and informative observation times. Scand J Stat 39:248–258

    Article  MathSciNet  Google Scholar 

  • Sun J, Wei LJ (2000) Regression analysis of panel count data with covariate-dependent observation and censoring times. J R Stat Soc Ser B 62:293–302

    Article  MathSciNet  Google Scholar 

  • Sun J, Zhao X (2013) Statistical analysis of panel count data. Springer, New York

    Book  Google Scholar 

  • Sun J, Tong X, He X (2007) Regression analysis of panel count data with dependent observation times. Biometrics 63:1053–1059

    Article  MathSciNet  Google Scholar 

  • Wellner JA, Zhang Y (2000) Two estimators of the mean of a counting process with panel count data. Ann Stat 28:779–814

    Article  MathSciNet  Google Scholar 

  • Wellner JA, Zhang Y (2007) Two likelihood-based semiparametric estimation methods for panel count data with covariates. Ann Stat 35:2106–2142

    Article  MathSciNet  Google Scholar 

  • Zhang Y (2002) A semiparametric pseudolikelihood estimation method for panel count data. Biometrika 89:39–48

    Article  MathSciNet  Google Scholar 

  • Zhao X, Tong X (2011) Semiparametric regression analysis of panel count data with information observation times. Comput Stat Data Anal 55:291–300

    Article  Google Scholar 

  • Zhao X, Tong X, Sun J (2013) Robust estimation for panel count data with informative observation times. Comput Stat Data Anal 57:33–40

    Article  MathSciNet  Google Scholar 

  • Zhu L, Sun J, Tong X, Pounds S (2011) Regression analysis of longitudinal data with informative observation times and application to medical cost data. Stat Med 30:1429–1440

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor, the Associate Editor and the two reviewers for their constructive and insightful comments and suggestions that greatly improved the paper. This research is partly supported by the Research Grant Council of Hong Kong (15301218), the National Natural Science Foundation of China (No. 11771366), and The Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangjin Jiang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of asymptotics

Appendix: Proofs of asymptotics

To establish the consistency and asymptotic normality of \(\hat{\eta }\) and \(\hat{\beta }\), we assume that \(\mathbf X _i(t)'s\) are of bounded variations. Furthermore, we assume that, as \(n\rightarrow +\infty \),

$$\begin{aligned} S_{1}(t;\eta _0)= & {} \frac{1}{n}\sum _{i=1}^n \exp \{\eta _0'{} \mathbf X _i^*(t)\} \rightarrow s_{1}(t;\eta _0)\\ S_{2}(t;\eta _0)= & {} \frac{1}{n}\sum _{i=1}^n \exp \{\eta _0'{} \mathbf X _i^*(t)\}{} \mathbf X _i^*(t)(\mathbf X _i^*(t))' \rightarrow s_{2}(t;\eta _0)\\ S_{3}(t;\eta _0)= & {} \frac{1}{n}\sum _{i=1}^n \exp \{\eta _0'{} \mathbf X _i^*(t)\}{} \mathbf X _i^*(t) \rightarrow s_{3}(t;\eta _0) \\ S_4(t;\eta _0)= & {} \frac{1}{n}\sum _{i=1}^n \exp \{\eta _0'{} \mathbf X _i^*(t)\}{} \mathbf X _i \rightarrow s_{4}(t;\eta _0)\\ S_{5}(t;\eta _0)= & {} \frac{1}{n}\sum _{i=1}^n \exp \{\eta _0'{} \mathbf X _i^*(t)\}{} \mathbf X _i(\mathbf X _i^*(t))' \rightarrow s_{5}(t;\eta _0) \end{aligned}$$

Define

$$\begin{aligned} dM_i(t)=\varDelta _i(t)dO_i(t)-\exp \{\eta _0'{} \mathbf X _i^*(t)\}d\mathcal{B}(t) \end{aligned}$$

and

$$\begin{aligned} dR_i(t)=N_i(t)\exp \left( -\beta _0'{} \mathbf X _i\right) \varDelta _i(t)dO_i(t)-\exp \left\{ \eta _0'{} \mathbf X _i^*(t)\right\} d\mathcal{A}(t). \end{aligned}$$

It is easy to show that \(dM_i(t)\) and \(dR_i(t)\) are mean 0 stochastic process. Also, define \(\bar{\mathbf{x }}(t)=\frac{s_4(t;\eta _0)}{s_1(t;\eta _0)}\), \(\bar{\mathbf{x }}^*(t)=\frac{s_3(t;\eta _0)}{s_1(t;\eta _0)}\).

1.1 A.1 Proof of consistency and asymptotic normality of \(\hat{\eta } =(\hat{\gamma }, \hat{\xi })\)

Recall that \(\hat{\eta }\) is the solution to \(V(\eta )=0\) where

$$\begin{aligned} V(\eta )=\sum _{i=1}^n \int _{0}^{\tau } R(t)\left\{ \mathbf{X }_i^*(t)-\bar{\mathbf{X }}^*(t;\eta )\right\} \varDelta _i(t)dO_i(t). \end{aligned}$$

By the Taylor series expansion, we have

$$\begin{aligned} V(\hat{\eta })-V(\eta _0)=\frac{\partial V(\eta )}{\partial \eta }|_{\eta =\eta _0}(\hat{\eta }-\eta _0)+\frac{1}{2}(\hat{\eta }-\eta _0)\frac{\partial ^2 V(\eta )}{\partial \eta \partial \eta '}|_{\eta =\eta ^*}(\hat{\eta }-\eta _0)', \end{aligned}$$

where \(\eta ^* \in (\eta _0, \hat{\eta })\). Since,

$$\begin{aligned} \frac{\partial \bar{\mathbf{X }}^*(t;\eta )}{\partial \eta }|_{\eta =\eta _0}= & {} \frac{\sum _{i=1}^n\sum _{j=1}^n \exp \{\eta _0'{} \mathbf X _i^*(t)\}\exp \{\eta _0'{} \mathbf X _j^*(t)\} (\mathbf X _j^*(t)-\mathbf X _i^*(t)) (\mathbf X _j^*(t))'}{ \left( \sum _{i=1}^n\exp \{\eta _0'{} \mathbf X _i^*(t)\}\right) ^2}\\= & {} \frac{S_2(t;\eta _0)}{S_1(t;\eta _0)}- \left( \frac{S_3(t;\eta _0)}{S_1(t;\eta _0)}\right) ^{\otimes 2},\\ \end{aligned}$$

thus, we have,

$$\begin{aligned}&\frac{\partial V(\eta )}{\partial \eta }|_{\eta =\eta _0}=-\sum _{i=1}^n\int _{0}^{\tau }R(t)\frac{\partial \bar{\mathbf{X }}^*(t;\eta )}{\partial \eta }|_{\eta =\eta _0}\varDelta _i(t)dO_i(t)\\&\quad =-\sum _{i=1}^n\int _{0}^{\tau }R(t)\left\{ \frac{S_2(t;\eta _0)}{S_1(t;\eta _0)}-\left( \frac{S_3(t;\eta _0)}{S_1(t;\eta _0)}\right) ^{\otimes 2}\right\} [dM_i(t)+\exp \{\eta _0'{} \mathbf X _i^*(t)\}d\mathcal{B}(t)]\\&\qquad -\sum _{i=1}^n\int _{0}^{\tau }R(t) \left\{ \frac{s_2(t;\eta _0)}{s_1(t;\eta _0)} -\left( \frac{s_3(t;\eta _0)}{s_1(t;\eta _0)}\right) ^{\otimes 2}\right\} dM_i(t)\\&\qquad -n\int _{0}^{\tau }R(t) \left\{ s_2(t;\eta _0)-\frac{s_3(t;\eta _0)^{\otimes 2}}{s_1(t;\eta _0) }\right\} d\mathcal{B}(t)+o_p(1). \end{aligned}$$

Define \(P_n=-\frac{1}{n}\frac{\partial V(\eta )}{\partial \eta }|_{\eta =\eta _0}\). Then we have,

$$\begin{aligned} \sqrt{n}(\hat{\eta }-\eta _0)= P_n^{-1}\frac{1}{\sqrt{n}}V(\eta _0)+o_p(1). \end{aligned}$$

Since \(\frac{\partial ^2 V(\eta )}{\partial \eta \partial \eta '}|_{\eta =\eta ^*}\) is bounded in probability. Furthermore, following the arguments similar to those given in Appendix 2 of Lin and Ying (2001), we have,

$$\begin{aligned}&\frac{1}{\sqrt{n}}V(\eta _0)=\frac{1}{\sqrt{n}}\sum _{i=1}^n \int _{0}^{\tau } R(t)\left\{ \mathbf{X }_i^*(t)-\bar{\mathbf{X }}^*(t;\eta _0)\right\} \varDelta _i(t)dO_i(t)\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n \int _{0}^{\tau } R(t)\left\{ \mathbf{X }_i^*(t)-\bar{\mathbf{X }}^*(t;\eta _0)\right\} \left\{ \varDelta _i(t)dO_i(t)-\exp \left\{ \eta _0'{} \mathbf X _i^*(t)\right\} d\mathcal{B}(t)\right\} \\&\qquad +\frac{1}{\sqrt{n}}\sum _{i=1}^n \int _{0}^{\tau } R(t)\left\{ \mathbf{X }_i^*(t)-\bar{\mathbf{X }}^*(t;\eta _0)\right\} \exp \left\{ \eta _0'{} \mathbf X _i^*(t)\right\} d\mathcal{B}(t)\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n \int _{0}^{\tau } R(t)\left\{ \mathbf{X }_i^*(t)-\bar{\mathbf{X }}^*(t;\eta _0)\right\} dM_i(t)\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n \int _{0}^{\tau } R(t)\left\{ \mathbf{X }_i^*(t)-\bar{\mathbf{x }}^*(t)\right\} dM_i(t)+o_p(1)\\&\quad =\frac{1}{\sqrt{n}}\sum _{i=1}^n V_i+o_p(1), \end{aligned}$$

a sum of n independent mean 0 random vectors plus an asymptotically negligible term. Thus, by the multivariate CLT, \(\frac{1}{\sqrt{n}}V(\eta _0)\rightarrow N(0,\varSigma _{\eta })\), where \(\varSigma _{\eta }=E[\int _{0}^{\tau } R(t)\{\mathbf{X }_1^*(t)-\bar{\mathbf{x }}^*(t)\}dM_1(t)]^{\otimes 2}\).

Finally, we have \(\sqrt{n}(\hat{\eta }-\eta _0)\rightarrow P^{-1}N(0,\varSigma _{\eta })\), as \(n\rightarrow +\infty \), where

$$\begin{aligned} P=\lim _{n\rightarrow +\infty }P_n=\int _{0}^{\tau }R(t)\left\{ s_2(t;\eta _0)-\frac{s_3(t;\eta _0)^{\otimes 2}}{s_1(t;\eta _0)}\right\} d\mathcal{B}(t). \end{aligned}$$

It is easy to know that \({\hat{P}}\) and \({\hat{\varSigma }}_{\eta }\) is the consistent estimator of P and \(\varSigma _{\eta }\), respectively.

1.2 A.2 Proof of consistency and asymptotic normality of \(\hat{\beta }\)

Recall that \(\hat{\beta }\) is the solution to \(U(\beta ;\hat{\eta })=0\) where

$$\begin{aligned} U(\beta ; \eta )= & {} \sum ^n_{i=1}\int ^\tau _0 W(t)\{\mathbf{X }_i-\bar{\mathbf{X }}(t; \eta )\}N_i(t)\exp (-\beta '{} \mathbf X _i)\varDelta _i(t)dO_i(t). \end{aligned}$$

By the Taylor series expansion, we have

$$\begin{aligned} U(\hat{\beta }; \hat{\eta })-U(\beta _0; \hat{\eta })=\frac{\partial U(\beta ;\hat{\eta })}{\partial \beta }|_{\beta =\beta _0}(\hat{\beta }-\beta _0)+\frac{1}{2}(\hat{\beta }-\beta _0)\frac{\partial ^2 U(\beta ,\hat{\eta })}{\partial \beta \partial \beta '}|_{\beta =\beta ^*}(\hat{\beta }-\beta _0)', \end{aligned}$$

where \(\frac{\partial U(\beta ;\hat{\eta })}{\partial \beta }|_{\beta =\beta _0}=-\sum _{i=1}^n\int _{0}^{\tau }W(t)\{\mathbf{X }_i-\bar{\mathbf{X }}(t;\hat{\eta })\}N_i(t)\exp (-\beta _0'{} \mathbf X _i){} \mathbf X _i'\varDelta _i(t)dO_i(t)\).

Define \(Q_n=-\frac{1}{n}\frac{\partial U(\beta ;\hat{\eta })}{\partial \beta }|_{\beta =\beta _0}\). Then we have \(\sqrt{n}(\hat{\beta }-\beta _0)=Q_n^{-1}\frac{1}{\sqrt{n}}U(\beta _0;\hat{\eta })+o_p(1)\), since \(\frac{\partial ^2 U(\beta ,\hat{\eta })}{\partial \beta \partial \beta '}|_{\beta =\beta ^*}\) is bounded. Therefore, it is sufficient to find the limit distribution of \(\frac{1}{\sqrt{n}}U(\beta _0;\hat{\eta })\). Again, by the Taylor series expansion, we have

$$\begin{aligned} U(\beta _0;\hat{\eta }){\,=\,}U(\beta _0;\eta _0)+\frac{\partial U(\beta _0;\eta )}{\partial \eta }|_{\eta =\eta _0}(\hat{\eta }-\eta _0)+\frac{1}{2}(\hat{\eta }-\eta _0)\frac{\partial ^2 U(\beta _0;\eta )}{\partial \eta \partial \eta '}|_{\eta =\eta ^*}(\hat{\eta }-\eta _0)', \end{aligned}$$

where \(\eta ^* \in (\eta _0,\hat{\eta })\).

As \(\hat{\eta }\) is a consistent estimator of \(\eta \) as showed in previous section and \(\frac{\partial ^2 U(\beta _0;\eta )}{\partial \eta \partial \eta '}|_{\eta =\eta ^*}\) is bounded, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}U(\beta _0;\hat{\eta })=\frac{1}{\sqrt{n}}U(\beta _0;\eta _0)+ \frac{1}{n}\frac{\partial U(\beta _0;\eta )}{\partial \eta }|_{\eta =\eta _0}\sqrt{n}(\hat{\eta }-\eta _0)+o_p(1). \end{aligned}$$

Similar to the arguments of \(V(\eta _0)\), we have

$$\begin{aligned} \frac{1}{\sqrt{n}}U(\beta _0; \eta _0)= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n\int ^\tau _0 W(t)\{\mathbf{X }_i-\bar{\mathbf{X }}(t; \eta _0)\}N_i(t)\exp (-\beta _0'{} \mathbf X _i)\varDelta _i(t)dO_i(t)\\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n\int ^\tau _0 W(t)\{\mathbf{X }_i-\bar{\mathbf{X }}(t; \eta _0)\}[dR_i(t)+\exp \{\eta _0'{} \mathbf X _i^*(t)d\mathcal{A}(t)\}] \\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n\int ^\tau _0 W(t)\{\mathbf{X }_i-\bar{\mathbf{X }}(t; \eta _0)\}dR_i(t)\\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n\int ^\tau _0 W(t)\{\mathbf{X }_i-\bar{\mathbf{x }}(t)\}dR_i(t)+o_p(1)\\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n U_i+o_p(1),\\ \end{aligned}$$

a sum of n independent mean 0 random vectors plus an asymptotically negligible term.

Now, we have

$$\begin{aligned} \frac{1}{\sqrt{n}}U(\beta _0;\hat{\eta })= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n U_i+ T_nP_n^{-1}\frac{1}{\sqrt{n}}\sum _{i=1}^n V_i+o_p(1)\\= & {} \frac{1}{\sqrt{n}}\sum _{i=1}^n W_i(M_n)+o_p(1), \end{aligned}$$

where \(T_n=\frac{1}{n}\frac{\partial U(\beta _0;\eta )}{\partial \eta }|_{\eta =\eta _0}, M_n=T_nP_n^{-1}, W_i(M_n)=U_i+M_nV_i\). Thus, by the multivariate CLT, we have \(\sqrt{n}(\hat{\beta }-\beta _0)\rightarrow Q^{-1}N(0,\varSigma _{\beta })\), where \(\varSigma _{\beta }=EW_1(M)^{\otimes 2}\), \(M=\lim _{n\rightarrow +\infty }M_n\), and

$$\begin{aligned} Q= & {} \lim _{n\rightarrow +\infty }\frac{1}{n}\sum _{i=1}^n\int _{0}^{\tau }W(t)\{\mathbf{X }_i-\bar{\mathbf{X }}(t;\hat{\eta })\}N_i(t)\exp (-\beta _0'{} \mathbf X _i)\mathbf X _i'\varDelta _i(t)dO_i(t)\\= & {} \lim _{n\rightarrow +\infty }\frac{1}{n}\sum _{i=1}^n\int _{0}^{\tau }W(t)\{\mathbf{X }_i-\bar{\mathbf{X }}(t;\hat{\eta })\}N_i(t)\exp (-\beta _0'{} \mathbf X _i)\mathbf X _i'[dM_i(t)\\&+\exp \{\eta _0'{} \mathbf X _i^*(t)\}d\mathcal{B}(t)]\\= & {} E\int _{0}^{\tau }W(t)[\mathbf X _1-\bar{\mathbf{x }}(t)]N_1(t)\exp (-\beta _0'{} \mathbf X _1)\mathbf X _1'\exp \{\eta _0'{} \mathbf X _1^*(t)\}d\mathcal{B}(t). \end{aligned}$$

Next we compute M. Note that

$$\begin{aligned} T_n= & {} -\frac{1}{n}\sum _{i=1}^n \int _{0}^{\tau } W(t)\frac{\partial \bar{\mathbf{X }}(t;\eta )}{\partial \eta }|_{\eta =\eta _0}N_i(t)\exp (-\beta _0'{} \mathbf X _i)\varDelta _i(t)dO_i(t). \end{aligned}$$

Since

$$\begin{aligned} \frac{\partial \bar{\mathbf{X }}(t;\eta )}{\partial \eta }|_{\eta =\eta _0}= & {} \frac{\sum _{i=1}^n\sum _{j=1}^n \exp \{\eta _0'{} \mathbf X _i^*(t)\}\exp \{\eta _0'{} \mathbf X _j^*(t)\}(\mathbf X _j-\mathbf X _i)(\mathbf X _j^*(t))'}{(\sum _{i=1}^n\exp \{\eta _0'{} \mathbf X _i^*(t)\})^2}\\= & {} \frac{S_5(t;\eta _0)}{S_1(t;\eta _0)}-\frac{S_4(t;\eta _0)S_3'(t;\eta _0)}{S_1^2(t;\eta _0)},\\ \end{aligned}$$

we have

$$\begin{aligned} T_n= & {} -\frac{1}{n}\sum _{i=1}^n \int _{0}^{\tau } W(t)\left\{ \frac{S_5(t;\eta _0)}{S_1(t;\eta _0)} -\frac{S_4(t;\eta _0)S_3'(t;\eta _0)}{S_1^2(t;\eta _0)}\right\} N_i(t)\exp (-\beta _0'{} \mathbf X _i)\varDelta _i(t)dO_i(t)\\= & {} -\frac{1}{n}\sum _{i=1}^n \int _{0}^{\tau } W(t)\left\{ \frac{S_5(t;\eta _0)}{S_1(t;\eta _0)} -\frac{S_4(t;\eta _0)S_3'(t;\eta _0)}{S_1^2(t;\eta _0)}\right\} [dR_i(t)+\exp \{\eta _0'{} \mathbf X _i^*(t)\}d\mathcal{A}(t)]\\= & {} -\frac{1}{n}\sum _{i=1}^n \int _{0}^{\tau } W(t)\left\{ \frac{s_5(t;\eta _0)}{s_1(t;\eta _0)} -\frac{s_4(t;\eta _0)s_3'(t;\eta _0)}{s_1^2(t;\eta _0)}\right\} dR_i(t)\\&-\int _{0}^{\tau } W(t)\left\{ s_5(t;\eta _0)-\frac{s_4(t;\eta _0)s_3'(t;\eta _0)}{s_1(t;\eta _0)}\right\} d\mathcal{A}(t)+o_p(1)\\&\rightarrow _p-\int _{0}^{\tau } W(t)\left\{ s_5(t;\eta _0) -\frac{s_4(t;\eta _0)s_3'(t;\eta _0)}{s_1(t;\eta _0)}\right\} d\mathcal{A}(t). \end{aligned}$$

Thus, we have \(M=TP^{-1}\), where

$$\begin{aligned} T=-\int _{0}^{\tau } W(t)\left\{ s_5(t;\eta _0)-\frac{s_4(t;\eta _0)s_3'(t;\eta _0)}{s_1(t;\eta _0)}\right\} d\mathcal{A}(t). \end{aligned}$$

It is easy to show that \({\hat{Q}}\), \({\hat{\varSigma }}_{\beta }\) and \({\hat{M}}\) are the consistent estimators of \(Q, \varSigma _{\beta }\) and M, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Su, W. & Zhao, X. Robust estimation for panel count data with informative observation times and censoring times. Lifetime Data Anal 26, 65–84 (2020). https://doi.org/10.1007/s10985-018-09457-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-018-09457-7

Keywords

Navigation