Skip to main content

Advertisement

Log in

Climate change drives increased directional movement of landscape ecotones

  • Perspective
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Ecotones are boundary zones formed where overlap between neighboring ecosystems creates an intermediate ecosystem with unique ecological characteristics. Dynamic ecotones change position along a boundary over time and can be further categorized as either shifting, where the adjacent ecosystems alternatively drive movement of the ecotone but maintain the same relative location over time, or directional, where one system encroaches into the other and the ecotone moves laterally.

Objectives

The purpose of this work was to examine how climate change alters movement dynamics of both directional and shifting ecotones.

Methods

In three ecosystem case studies, we examine the effects of climate change on landscape-scale ecotone movement across the marine, terrestrial, and interfacing environments.

Results

Shifts in local and global climate drive changes in ecotone patterns, increasing directional ecotone movement at both shifting and directional ecotones. Specifically, unidirectional changes in climate patterns disrupt dynamic equilibria at shifting ecosystem boundaries, thereby facilitating unidirectional movement at the previously shifting boundaries. Climate changes additionally accelerate pre-existing directional migration of ecotones through changes to abiotic gradients.

Conclusion

Directional climate change increases directional movement in multiple types of ecotone. Future work should consider the rate and feedback mechanisms of ecotone movement and function at additional ecotones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott MR, Denman KL, Powell TM, Richerson PJ, Richards RC, Goldman CR (1984) Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnol Oceanogr 29:862–878

    Article  CAS  Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci 95:14839–14842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RC (2006) Evolution and origin of the central grassland of North America: climate, fire, and mammalian grazers. J Torrey Bot Soc 133:626–647

    Article  Google Scholar 

  • Anisfeld S, Cooper K, Kemp A (2017) Upslope development of a tidal marsh as a function of upland land use. Glob Chang Biol 23:755–766

    Article  PubMed  Google Scholar 

  • Archer SR, Anderson EM, Predick KI, Schwinning S, Steidl RJ, Woods SR (2017) Woody plant encroachment: causes and consequences. In: Briske D (ed) Rangeland systems, Springer, Cham, pp 25–84. https://doi.org/10.1007/978-3-319-46709-2_2

  • Auer MT, Powell KD (2004) Heterotrophic bacterioplankton dynamics at a site off the southern shore of Lake Superior. J Great Lakes Res 30:214–229

    Article  Google Scholar 

  • Barbiero RP, Tuchman ML (2004) The deep chlorophyll maximum in Lake Superior. J Great Lakes Res 30:256–268

    Article  CAS  Google Scholar 

  • Bestelmeyer BT, Khalil NI, Peters DP (2007) Does shrub invasion indirectly limit grass establishment via seedling herbivory? A test at grassland-shrubland ecotones. J Veg Sci 18:363–371

    Article  Google Scholar 

  • Bird DF, Kalff J (1989) Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnol Oceanogr 34:155–162

    Article  Google Scholar 

  • Bopp L, Monfray P, Aumont O, Dufresne JL, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Global Biogeochem Cycles 15:81–99

    Article  CAS  Google Scholar 

  • Caputi N, De Lestang S, Frusher S, Wahle RA (2013) The impact of climate change on exploited lobster stocks. In: Phillips BF (ed) Lobsters: biology, management, aquaculture and fisheries. pp 84–112. https://doi.org/10.1002/9781118517444.ch4

  • Coldren GA, Langley JA, Feller IC, Chapman SK (2018) Warming accelerates mangrove expansion and surface elevation in a subtropical wetland. J Ecol 107:79–90

    Article  Google Scholar 

  • Connell LC, Scasta JD, Porensky LM (2018) Prairie dogs and wildfires shape vegetation structure in a sagebrush grassland more than does rest from ungulate grazing. Ecosphere 9:e02390

    Article  Google Scholar 

  • Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can J Fish Aquat Sci 39:791–803

    Article  CAS  Google Scholar 

  • Cullen JJ (2015) Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Ann Rev Mar Sci 7:207–239

    Article  PubMed  Google Scholar 

  • D’Odorico P, Fuentes JD, Pockman WT, Collins SL, He Y, Medeiros JS, DeWekker S, Litvak ME (2010) Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere 1:1–11

    Article  Google Scholar 

  • Deaton CD, Hein CJ, Kirwan ML (2017) Barrier island migration dominates ecogeomorphic feedbacks and drives salt marsh loss along the Virginia Atlantic Coast, USA. Geology 45:123–126

    Article  Google Scholar 

  • Delcourt PA, Delcourt HR (1992) Ecotone dynamics in space and time. In: Hansen AJ, di Castri F (eds) Landscape boundaries. Springer, New York, pp 19–54. https://doi.org/10.1007/978-1-4612-2804-2_2

  • Donnelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proc Natl Acad Sci 98:14218–14223. https://doi.org/10.1073/pnas.251209298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duniway MC, Snyder KA, Herrick JE (2010) Spatial and temporal patterns of water availability in a grass–shrub ecotone and implications for grassland recovery in arid environments. Ecohydrology 3:55–67

    Google Scholar 

  • Estrada M, Marrasé C, Latasa M, Berdalet E, Delgado M, Riera T (1993) Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean. Mar Ecol Prog Ser 92:289–300

    Article  Google Scholar 

  • Fagherazzi S, Anisfeld SC, Blum LK, Long EV, Feagin RA, Fernandes A, Kearney WS, Williams K (2019) Sea level rise and the dynamics of the marsh-upland boundary. Front Environ Sci 7:1–18

    Article  Google Scholar 

  • Fee EJ (1976) The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: Implications for primary production estimates. Limnol Oceanogr 21:767–783

    Article  Google Scholar 

  • Forman RT, Moore PN (1992) Theoretical foundations for understanding boundaries in landscape mosaics. In: Hansen AJ, di Castri F (eds) Landscape boundaries. Springer, New York, pp 236–258. https://doi.org/10.1007/978-1-4612-2804-2_11

  • Fuhlendorf SD, Harrell EC, Engle DM, Hamilton RG (2006) Should heterogeneity be the basis for conservation? Grassland bird response to fire and grazing. Ecol Appl 16:1706–1716

    Article  PubMed  Google Scholar 

  • Gedan K, Fernández-Pascual E (2019) Salt marsh migration into salinized agricultural fields: a novel assembly of plant communities. J Veg Sci 30:1007–1016

    Article  Google Scholar 

  • Gehman AM, McLenaghan NA, Byers JE, Alexander CR, Pennings SC, Alber M (2018) Effects of small-scale armoring and residential development on the salt marsh-upland ecotone. Estuaries Coast 41:S54–S67

    Article  Google Scholar 

  • Goldblum D, Rigg LS (2005) Tree growth response to climate change at the deciduous boreal forest ecotone, Ontario, Canada. Can J for Res 35:2709–2718

    Article  Google Scholar 

  • Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768

    Article  Google Scholar 

  • Gosz JR (1993) Ecological hierarchies. Ecol Appl 3:369–376

    Article  PubMed  Google Scholar 

  • Greiner JT, McGlathery KJ, Gunnell J, McKee BA (2013) Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS ONE 8:e72469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton BP, Shennan I, Bradley SL, Cahill N, Kirwan M, Kopp RE, Shaw TA (2018) Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nat Commun 9:1–7

    Article  CAS  Google Scholar 

  • Horváth A, March IJ, Wolf JH (2001) Rodent diversity and land use in Montebello, Chiapas, Mexico. Stud Neotrop Fauna Environ 36:169–176

    Article  Google Scholar 

  • Huisman J, Pham Thi NN, Karl DM, Sommeijer B (2006) Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439:322–325

    Article  CAS  PubMed  Google Scholar 

  • Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit Rev Environ Sci Technol 21:491–565

    Google Scholar 

  • Jorgensen EE, Demarais S, Monasmith T (2000) Rodent habitats in a Chihuahuan Desert/desert plains grassland ecotone. Tex J Sci 52:303–312

    Google Scholar 

  • Junior NA, Meirelles PM, de Oliveira SE, Dutilh B, Silva GG, Paranhos R, Kruger RH (2015) Microbial community diversity and physical–chemical features of the Southwestern Atlantic Ocean. Arch Microbiol 197:165–179

    Article  CAS  Google Scholar 

  • Kimor B, Berman T, Schneller A (1987) Phytoplankton assemblages in the deep chlorophyll maximum layers off the Mediterranean coast of Israel. J Plankton Res 9:433–443

    Article  Google Scholar 

  • Kirwan ML, Gedan KB (2019) Sea-level driven land conversion and the formation of ghost forests. Nat Clim Chang 9:450–457

    Article  Google Scholar 

  • Kolasa J, Zalewski M (1995) Notes on ecotone attributes and functions. Hydrobiologia 303:1–7

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  PubMed  Google Scholar 

  • Kupfer JA, Cairns DM (1996) The suitability of montane ecotones as indicators of global climatic change. Prog Phys Geogr 20:253–272

    Article  Google Scholar 

  • Letelier RM, Karl DM, Abbott MR, Bidigare RR (2004) Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol Oceanogr 49:508–519

    Article  CAS  Google Scholar 

  • Lloyd KM, McQueen AA, Lee BJ, Wilson RC, Walker S, Wilson JB (2000) Evidence on ecotone concepts from switch, environmental and anthropogenic ecotones. J Veg Sci 11:903–910

    Article  Google Scholar 

  • Longhurst A (2006) Ecological geography of the sea, 2nd edn. Elsevier Science Publishers, New York

    Google Scholar 

  • Macías D, Stips A, Garcia-Gorriz E (2014) The relevance of deep chlorophyll maximum in the open Mediterranean Sea evaluated through 3D hydrodynamic-biogeochemical coupled simulations. Ecol Modell 281:26–37

    Article  CAS  Google Scholar 

  • Magnuson JJ (1990) Long-term ecological research and the invisible present. BioScience 40(7):495–501

    Article  Google Scholar 

  • Maher EL, Germino MJ, Hasselquist NJ (2005) Interactive effects of tree and herb cover on survivorship, physiology, and microclimate of conifer seedlings at the alpine tree-line ecotone. Can J for Res 35:567–574

    Article  Google Scholar 

  • Martínez-Soto KS, Johnson DS (2020) The density of the Atlantic marsh fiddler crab (Minuca pugnax, Smith, 1870)(Decapoda: Brachyura: Ocypodidae) in its expanded range in the Gulf of Maine, USA. J Crustac Biol 40:544–548

    Article  Google Scholar 

  • Masubelele ML, Hoffman MT, Bond WJ, Gambiza J (2014) A 50 year study shows grass cover has increased in shrublands of semi-arid South Africa. J Arid Environ 104:43–51

    Article  Google Scholar 

  • McGranahan DA, Engle DM, Fuhlendorf SD, Winter SJ, Miller JR, Debinski DM (2012) Spatial heterogeneity across five rangelands managed with pyric-herbivory. J Appl Ecol 49:903–910

    Article  Google Scholar 

  • Minchinton TE, Bertness MD (2003) Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. Ecol Appl 13:1400–1416

    Article  Google Scholar 

  • Moreno-de las Heras M, Turnbull L, Wainwright J (2016) Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone. Ecology 97:2303–2318

    Article  PubMed  Google Scholar 

  • Muñoz-Rodríguez AF, Sanjosé I, Márquez-García B, Infante-Izquierdo MD, Polo-Ávila A, Nieva FJJ, Castillo JM (2017) Germination syndromes in response to salinity of Chenopodiaceae halophytes along the intertidal gradient. Aquat Bot 139:48–56

    Article  CAS  Google Scholar 

  • Naiman RJ, Décamps H, Pastor J, Johnston CA (1988) The potential importance of boundaries of fluvial ecosystems. J North Am Benthol Soc 7:289–306

    Article  Google Scholar 

  • Naito AT, Cairns DM (2011) Patterns and processes of global shrub expansion. Prog Phys Geogr 35:423–442

    Article  Google Scholar 

  • Neilson RP (1993) Transient ecotone response to climatic change: some conceptual and modelling approaches. Ecol Appl 3:385–395

    Article  PubMed  Google Scholar 

  • Noble IR (1993) A model of the responses of ecotones to climate change. Ecol Appl 3:396–403

    Article  PubMed  Google Scholar 

  • Novellie PA, Bezuidenhout H (1994) The influence of rainfall and grazing on vegetation changes in the Mountain Zebra National Park. Afr J Wildl Res 24:60–71

    Google Scholar 

  • O’Connor TG, Roux PW (1995) Vegetation changes (1949–71) in a semi-arid, grassy dwarf shrubland in the Karoo, South Africa: influence of rainfall variability and grazing by sheep. J Appl Ecol 32:612–626

    Article  Google Scholar 

  • Pennings S, Callaway R (1992) Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73:681–690

    Article  Google Scholar 

  • Peters DPC (2002) Plant species dominance at a grassland-shrubland ecotone: an individual-based gap dynamics model of herbaceous and woody species. Ecol Modell 152:5–32

    Article  Google Scholar 

  • Peters DPC, Gosz J, Pockman WT, Small EE, Parmenter RR, Collins SL, Muldavin E (2006) Integrating patch and boundary dynamics to understand and predict biotic transitions at multiple scales. Landsc Ecol 21:19–33

    Article  Google Scholar 

  • Pockman WT, Small EE (2010) The influence of spatial patterns of soil moisture on the grass and shrub responses to a summer rainstorm in a Chihuahuan Desert ecotone. Ecosystems 13:511–525

    Article  Google Scholar 

  • Pollehne F, Klein B, Zeitzschel, B (1993) Low light adaptation and export production in the deep chlorophyll maximum layer in the northern Indian Ocean. Deep Sea Res 2 Top Stud Oceanogr 40:737–752. https://doi.org/10.1016/0967-0645(93)90055-R

  • Porensky LM, Mueller KE, Augustine DJ, Derner JD (2016) Thresholds and gradients in a semi-arid grassland: long-term grazing treatments induce slow, continuous and reversible vegetation change. J Appl Ecol 53:1013–1022

    Article  Google Scholar 

  • Ratajczak Z, Nippert JB, Briggs JM, Blair JM (2014) Fire dynamics distinguish grasslands, shrublands and woodlands as alternative attractors in the Central Great Plains of North America. J Ecol 102:1374–1385

    Article  Google Scholar 

  • Reinl KL, Sterner RW, Austin JA (2020) Seasonality and physical drivers of deep chlorophyll layers in Lake Superior, with implications for a rapidly warming lake. J Great Lakes Res 46:1615–1624

    Article  CAS  Google Scholar 

  • Ribalet F, Marchetti A, Hubbard KA, Brown K, Durkin CA, Morales R, Robert M, Swalwell JE, Tortell PD, Armbrust EV (2010) Unveiling a phytoplankton hotspot at a narrow boundary between coastal and offshore waters. Proc Natl Acad Sci 107:16571–16576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risser PG (1995) The status of the science examining ecotones: a dynamic aspect of landscape is the area of steep gradients between more homogeneous vegetation associations. Bioscience 45:318–325

    Article  Google Scholar 

  • Roux PW (1966) The effects of seasonal rainfall and grazing on mixed Karoo veld. Afr J Range Forage Sci 1:103–110

    Google Scholar 

  • Rutherford MC, Powrie LW, Husted LB (2012) Plant diversity consequences of a herbivore-driven biome switch from Grassland to shrub steppe in South Africa. Appl Veg Sci 15:14–25

    Article  Google Scholar 

  • Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20:147–157

    Article  PubMed  Google Scholar 

  • Sanchez B, Parmenter R (2002) Patterns of shrub-dwelling arthropod diversity across a desert shrubland-grassland ecotone: a test of island biogeographic theory. J Arid Environ 50:247–265

    Article  Google Scholar 

  • Santelmann MV, Boisjolie BA, Flitcroft R, Gomez M (2019) Relationships between salt marsh vegetation and surface elevation in Coos Bay Estuary, Oregon. Northwest Sci 93:137–154

    Article  Google Scholar 

  • Schieder NW, Kirwan ML (2019) Sea-level driven acceleration in coastal forest retreat. Geology 47:1151–1155

    Article  Google Scholar 

  • Schieder NW, Walters DC, Kirwan ML (2018) Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuaries Coast 41:940–951

    Article  Google Scholar 

  • Schooley RL, Bestelmeyer BT, Campanella A (2018) Shrub encroachment, productivity pulses, and core-transient dynamics of Chihuahuan Desert rodents. Ecosphere 9:e02330

    Article  Google Scholar 

  • Senft AR (2009) Species diversity patterns at ecotones. https://doi.org/10.17615/20k5-yb32

  • Shiponeni N, Allsopp N, Carrick PJ, Hoffman MT (2011) Competitive interactions between grass and succulent shrubs at the ecotone between an arid grassland and succulent shrubland in the Karoo. Plant Ecol 212:795–808

    Article  Google Scholar 

  • Smith JAM (2013) The role of Phragmites australis in mediating inland salt marsh migration in a mid-Atlantic estuary. PLoS ONE 8:e65091

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AJ, Kiwan ML (2021) Sea-level driven marsh migration results in rapid net loss of carbon. Geophys Res Lett. https://doi.org/10.1029/2021GL092420

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith TB, Wayne RK, Girman DJ, Bruford MW (1997) A role for ecotones in generating rainforest biodiversity. Science 276:1855–1857

    Article  CAS  Google Scholar 

  • Theuerkauf EJ, Rodriguez AB (2017) Placing barrier-island transgression in a blue-carbon context. Earth’s Future 5:789–810

    Article  Google Scholar 

  • Traut B (2005) The role of coastal ecotones: a case study of the salt marsh/upland transition zone in California. J Ecol 93:279–290

    Article  Google Scholar 

  • Trevathan-Tackett SM, Wessel C, Cebrián J, Ralph PJ, Masqué P, Macreadie PI (2018) Effects of small-scale, shading-induced seagrass loss on blue carbon storage: implications for management of degraded seagrass ecosystems. J Appl Ecol 55:1351–1359

    Article  CAS  Google Scholar 

  • van der Maarel E (1990) Ecotones and ecoclines are different. J Veg Sci 1:135–138

    Article  Google Scholar 

  • Veldkornet DA, Adams JB, Potts AJ (2015) Where do you draw the line? Determining the transition thresholds between estuarine salt marshes and terrestrial vegetation. S Afr J Bot 101:153–159

    Article  Google Scholar 

  • Vetter S (2009) Drought, change and resilience in South Africa’s arid and semi-arid rangelands. S Afr J Sci 105:29–33

    Article  Google Scholar 

  • Wang H, Cai Y, Yang Q, Gong Y, Lv G (2019) Factors that alter the relative importance of abiotic and biotic drivers on the fertile island in a desert-oasis ecotone. Sci Total Environ 697:134096

    Article  CAS  PubMed  Google Scholar 

  • Wasson K, Woolfolk A, Fresquez C (2013) Ecotones as indicators of changing environmental conditions: rapid migration of salt marsh-upland boundaries. Estuaries Coast 36:654–664

    Article  CAS  Google Scholar 

  • Yando ES, Osland MJ, Willis JM, Day RH, Krauss KW, Hester MW (2016) Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. J Ecol 10:1020–1031

    Article  CAS  Google Scholar 

  • Yvon-Durocher G, Montoya JM, Trimmer M, Woodward G (2011) Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems. Glob Chang Biol 17:1681–1694

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. David Johnson for encouraging this review and for his comments on several iterations of this manuscript. We would also like to thank the three anonymous reviewers, whose comments helped improve the clarity, precision, and relevance of this manuscript. This work was supported by funding from the Virginia Institute of Marine Science and the National Science Foundation (Grant # 1832221). This paper is contribution #4037 from the Virginia Institute of Marine Science.

Funding

This work was supported by the Virginia Institute of Marine Science and the National Science Foundation (Grant # 1832221).

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally to all aspects of this paper.

Corresponding author

Correspondence to Alexander J. Smith.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Consent for publication

Both authors consent to the submission of this article for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, A.J., Goetz, E.M. Climate change drives increased directional movement of landscape ecotones. Landscape Ecol 36, 3105–3116 (2021). https://doi.org/10.1007/s10980-021-01314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01314-7

Keywords

Navigation