Skip to main content

Advertisement

Log in

Do landscape and riverscape shape genetic patterns of the Neotropical otter, Lontra longicaudis, in eastern Mexico?

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Functional connectivity of semiaquatic species is poorly studied despite that freshwater ecosystems are amongst the most threatened worldwide due to habitat deterioration. The Neotropical otter, Lontra longicaudis, is a threatened species that represents a good model to evaluate the effect of landscape-riverscape features on genetic structure and gene flow of freshwater species.

Objectives

We aimed to assess the spatial genetic structure of L. longicaudis and to evaluate the landscape-riverscape attributes that shape its genetic structure and gene flow at local sites (habitat patches) and between sites (landscape matrix).

Methods

We conducted the study in three basins located in Veracruz, Mexico, which have a high degree of ecosystem deterioration. We used a non-invasive genetic sampling and a landscape genetics individual-based approach to test the effect stream hierarchical structure, isolation-by-distance, and isolation-by-resistance on genetic structure and gene flow.

Results

We found genetic structure that corresponded to the latitudinal and altitudinal heterogeneity of the landscape and riverscape, as well as to the hierarchical structure of the streams. Open areas and steep slopes were the variables affecting genetic structure at local sites, whereas areas with suitable habitat conditions, higher ecosystem integrity and larger streams enhanced gene flow between sites.

Conclusions

The landscape-riverscape characteristics that maintain functional connectivity of L. longicaudis differed between the upper, middle, and lower basins. Our results have important implications for the conservation of the species, including the maintenance of larger suitable areas in Actopan and the necessity to improve connectivity in Jamapa, through the establishment of biological corridors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aceituno F, Trochez D, Nuñez C (2015) Recent Record of the Neotropical River Otter (Lontra longicaudis) in the Choluteca River Tegucigalpa. Honduras IUCN Otter Spec Group Bull 32:25–29

    Google Scholar 

  • Andrade-Ponce GP, Teddy A-S (2017) Notable altitudinal range expansion of Lontra longicaudis (Carnivora: Mustelidae) in Colombian Paramos. Therya 8:75–78

    Google Scholar 

  • Atkins JL, Perry GLW, Dennis TE (2019) Effects of mis-alignment between dispersal traits and landscape structure on dispersal success in fragmented landscapes. R Soc Open Sci. https://doi.org/10.1098/rsos.181702

    Article  PubMed  PubMed Central  Google Scholar 

  • Auffret AG, Plue J, Cousins SAO (2015) The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44:51–59

    PubMed Central  Google Scholar 

  • Bolker BM (2008) Ecological models and data in R. Princeton University Press, Princeton

    Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    CAS  PubMed  Google Scholar 

  • Brauer CJ, Hammer MP, Beheregaray LB (2016) Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol 25:5093–5113

    CAS  PubMed  Google Scholar 

  • Byrne MS, Quintana RD, Bolkovic MA, Cassini MH, Túnez JI (2015) The role of river drainages in shaping the genetic structure of capybara populations. Genetica 6:645–656

    Google Scholar 

  • Carranza ML, D’Alessandro E, Saura S, Loy A (2012) Connectivity providers for semi-aquatic vertebrates: the case of the endangered otter in Italy. Landsc Ecol 2:281–290

    Google Scholar 

  • Carrillo-Rubio E, Lafón A (2004) Neotropical river otter micro-habitat preference in west-central Chihuahua. Mexico IUCN Otter Spec Group Bull 21:10–15

    Google Scholar 

  • Casariego-Madorell MA, List R, Ceballos G (2008) Tamaño poblacional y alimentación de la nutria de río (Lontra longicaudis annectens) en la costa de Oaxaca, México. Acta Zool Mex 24:179–199

    Google Scholar 

  • Centeno-Cuadros A, Román J, Delibes M, Godoy JA (2011) Prisoners in their habitat? Generalist dispersal by habitat specialists: a case study in southern water vole (Arvicola sapidus). PLoS ONE. https://doi.org/10.1371/journal.pone.0024613

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agr Biol Envir St 7:361–372

    Google Scholar 

  • Cole T, Hammer M, Unmack P, Teske P, Brauer CJ, Adams M, Beheregaray LB (2016) Range-wide fragmentation in a threatened fish associated with post-European settlement modification in the Murray-Darling Basin, Australia. Conserv Gen 17:1377–1391

    Google Scholar 

  • Coster SS, Kovach AI (2012) Anthropogenic influences on the spatial genetic structure of black bears. Conserv Gen 13:1247–1257

    Google Scholar 

  • Cotler-Ávalos H, Garrido A, Bunge V, Cuevas ML (2010) Las cuencas hidrográficas de México: priorización y toma de decisiones. In: Cotler-Ávalos H, et al. (eds) Las cuencas hidrográficas de México. Diagnóstico y priorización. Pluralia Ediciones e Impresiones, Mexico City

    Google Scholar 

  • Crawford JC, Liu Z, Nelson TA, Nielsen CK, Bloomquist CK (2009) genetic population structure within and between beaver (Castor canadensis) Populations in Illinois. J Mammal 90:373–379

    Google Scholar 

  • Cuervo-Robayo AP, Téllez-Valdés O, Gómez M, Venegas-Barrera C, Manjarrez J, Martínez-Meyer E (2013) An update of high-resolution monthly climate surfaces for Mexico. Int J Climatol 34:2427–2437

    Google Scholar 

  • Davis CD, Epps CW, Flitcroft RL, Banks MA (2018) Refining and defining riverscape genetics: how rivers influence population genetic structure. WIRES Water. https://doi.org/10.1002/wat2.1269

    Article  Google Scholar 

  • Day CC, McCann NP, Zollner PA, Gilbert JH, MacFarland DM (2019) Temporal plasticity in habitat selection criteria explains patterns of animal dispersal. Behav Ecol 30:528–540

    PubMed  PubMed Central  Google Scholar 

  • DiLeo M, Wagner H (2016) A landscape ecologist’s agenda for landscape genetics. Curr Landsc Ecol Rep 1:15–126

    Google Scholar 

  • DiLeo MF, Siu JC, Rhodes MK, López-Villalobos A, Redwine A, Ksiazek K, Dyer RJ (2014) The gravity of pollination: integrating at-site features into spatial analysis of contemporary pollen movement. Mol Ecol 23:3973–3982

    PubMed  Google Scholar 

  • Draheim HM, Moore JA, Fortin MJ, Scribner KT (2018) Beyond the snapshot: landscape genetic analysis of time series data reveal responses of American black bears to landscape change. Evol Appl 11:1219–1230

    PubMed  PubMed Central  Google Scholar 

  • Drake JM, Richards RL (2018) Estimating environmental suitability. Ecosphere. https://doi.org/10.1002/ecs2.2373

    Article  Google Scholar 

  • Dyer RJ, Chan DM, Gardiakos V, Meadows CA (2012) Pollination graphs: quantifying pollen pool covariance networks and the influence of intervening landscape on genetic connectivity in the North American understory tree, Cornus florida. Landsc Ecol 27:239–251

    Google Scholar 

  • Environmental Systems Research Institute (ESRI) (2013) ArcGIS Desktop: Release 10.2.1. ESRI, Redlands

    Google Scholar 

  • Equihua M, García AN, Pérez-Maqueo O, Benítez-Badillo G, Kolb M, Schmidt M, Equihua-Benítez J, Maeda P, Álvarez Palacios JL (2014) Integridad ecológica como indicador de la calidad ambiental. Guardianes de nuestro futuro ambiental, Bioindicadores, pp 695–718

    Google Scholar 

  • Ersts PJ (2020) Geographic Distance Matrix Generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. Available from https://biodiversityinformatics.amnh.org/open_source/gdmg. Accessed on Jan 2020

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    PubMed  Google Scholar 

  • Fahrig L (2005) When is a landscape perspective important? In: Wiens JA, Moss MR (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 3–10

    Google Scholar 

  • Galpern P, Manseau M, Hettinga P, Smith K, Wilson P (2012a) Allelematch: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Resour 12:771–778

    PubMed  Google Scholar 

  • Galpern P, Manseau M, Wilson P (2012b) Grains of connectivity: analysis at multiple spatial scales in landscape genetics. Mol Ecol 21:3996–4009

    PubMed  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Google Scholar 

  • Guerrero J, Byrne AW, Lavery J, Presho E, Gavin K, Courcier EA, O'Keeffe J, Fogarty U, O'Meara DB, Ensing D, McCormick D, Biek R, Skuce RA, Allen AR (2018) The population and landscape genetics of the European badger (Meles meles) in Ireland. Ecol Evol 8:10233–10246

    PubMed  PubMed Central  Google Scholar 

  • Hernández-Romero PC, Botello-López FJ, Hernández-García N, Espinosa-Rodríguez J (2018) New Altitudinal Record of Neotropical Otter (Lontra longicaudis Olfers, 1818) and Conflict with Fish Farmers in Mexico. Otter Spec Group Bull 35:193–197

    Google Scholar 

  • Holland A, van der Merwe J (2016) Do river otters conform to habitat suitability assessments? J Contemp Water Res Educ 157:3–13

    Google Scholar 

  • Hughes JM, Schmidt DJ, Finn DS (2009) Genes in Streams: Using DNA to Understand the Movement of Freshwater Fauna and Their Riverine Habitat. Bioscience 59:573–583

    Google Scholar 

  • Hughes JM, Huey JA, Schmidt DJ (2013) Is realised connectivity among populations of aquatic fauna predictable from potential connectivity? Freshw Biol 58:951–966

    Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI) (2011) Sistema de consultas de las cuencas hidrográficas de México. Disponible en: https://cuencas.ine.gob.mx/cuenca/

  • Janssens X, Fontaine MC, Michaux JR, Libois R, De Kermabon J, Defourny P, Baret PV (2008) Genetic pattern of the recent recovery of European otters in southern France. Ecography 31:176–186

    Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC genet 94:1471–2156

    Google Scholar 

  • Kalinowski ST, Meeuwig MH, Narum SR, Taper ML (2008) Stream trees: a statistical method for mapping genetic differences between populations of freshwater organisms to the sections of streams that connect them. Can J Fish Aquat Sci 65:2752–2760

    Google Scholar 

  • Kierepka EM, Latch EK (2015) Performance of partial statistics in individual-based landscape genetics. Mol Ecol Resour 15:512–525

    CAS  PubMed  Google Scholar 

  • Kierepka EM, Latch EK (2016) High gene flow in the American badger overrides habitat preferences and limits broadscale genetic structure. Mol Ecol 25:6055–6076

    CAS  PubMed  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 8:879–890

    Google Scholar 

  • Kruuk H (2006) Otters: ecology, behaviour and conservation. Oxford University Press, Oxford

    Google Scholar 

  • Lai S, Quiles A, Lambourdière J, Berteaux D, Lalis A (2017) Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic. BMC Res Notes. https://doi.org/10.1186/s13104-017-3002-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Landguth EL, Cushman SA, Murphy MA, Luikart G (2010) Relationships between migration rates and landscape resistance assessed using individual-based simulations. Mol Ecol Resour 10:854–862

    CAS  PubMed  Google Scholar 

  • Latch EK, Scognamillo DG, Fike JA, Chamberlain MJ, Rhodes OE Jr (2008) Deciphering ecological barriers to North American river otter (Lontra canadensis) gene flow in the Louisiana landscape. J Hered 99:265–274

    CAS  PubMed  Google Scholar 

  • Latorre-Cardenas MC, Gutiérrez-Rodríguez C, Rico Y (2020a) Estimating genetic and demographic parameters relevant for the conservation of the Neotropical otter, Lontra longicaudis, in Mexico. Conserv Genet 21:719–734

    Google Scholar 

  • Latorre-Cardenas MC, Gutiérrez Rodríguez C, Lance S (2020b) Isolation and characterization of 13 microsatellite loci for the Neotropical otter, Lontra longicaudis, by next generation sequencing. Mol Biol Rep 47:731–736

    CAS  PubMed  Google Scholar 

  • Laurence S, Smith MJ, Schulte-Hostedde AI (2013) Effects of structural connectivity on fine scale population genetic structure of muskrat, Ondatra zibethicus. Ecol Evol 3:3524–3535

    PubMed  PubMed Central  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Loy A, Carranza M, Cianfrani C, D'Alessandro E, Bonesi L, Marzio PD, Minotti M, Regiani G, Kryštufek B, Amori G, Mitchell-Jones A, Zima J (2009) Otter Lutra lutra population expansion: assessing habitat suitability and connectivity in southern Italy. Folia Zool 58:309–326

    Google Scholar 

  • Macías-Sánchez S, Aranda M (1999) Análisis de la alimentación de la nutria Lontra longicaudis (Mammalia: Carnivora) en un sector del Río Los Pescados, Veracruz, México. Acta Zool Mex 76:49–57

    Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Google Scholar 

  • Martínez-Meyer E, Sosa-Escalante JE, Álvarez F (2014) El estudio de la biodiversidad en México. Rev Mex Biodivers 85:1–9

    Google Scholar 

  • Martín-Vélez V, Mohring B, van Leeuwen CHA, Shamoun-Baranes J, Thaxter CB, Baert JM, Camphuysen CJ, Green AJ (2020) Functional connectivity network between terrestrial and aquatic habitats by a generalist waterbird, and implications for biovectoring. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135886

    Article  PubMed  Google Scholar 

  • Mayagoitia-González PE, Fierro-Cabo A, Valdez R, Andersen M, Cowley D, Steiner R (2013) Uso de hábitat y perspectivas de Lontra longicaudis en un área protegida de Tamaulipas, México. Therya 4:243–256

    Google Scholar 

  • Mayor-Victoria R, Botero-Botero A (2010) Uso del hábitat por la nutria neotropical Lontra longicaudis (Carnivora: Mustelidae) en la zona baja del río Roble, Alto Cauca, Colombia. Bol Cient Mus His Nat 14:121–130

    Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    PubMed  Google Scholar 

  • Meffe GK, Vrijenhoek RC (1988) Conservation genetics in the management of desert fishes. Conserv Biol 2:157–169

    Google Scholar 

  • Montano V, Jombart T (2017) An Eigenvalue test for spatial principal component analysis. BMC Bioinform 18:562

    CAS  Google Scholar 

  • Mora F (2019) The use of ecological integrity indicators within the natural capital index framework: the ecological and economic value of the remnant natural capital of México. J Nat Conserv 47:77–92

    Google Scholar 

  • Muñoz-Ramírez CP, Victoriano PF, Habit E (2015) Inter-basin dispersal through irrigation canals explains low genetic structure in Diplomystes cf. chilensis, an endangered freshwater catfish from Central Chile. Limnologica 53:10–16

    Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91(252):261

    Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Google Scholar 

  • Navarro-Picado J, Spínola-Parallada M, Madrigal-Mora A, Fonseca-Sánchez A (2017) Selección de hábitat de Lontra longicaudis (Carnivora, Mustelidae) bajo la influencia de la represa hidroeléctrica del río Peñas Blancas y sus tributarios. Uniciencia. https://doi.org/10.15359/ru.31-1.8

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MH, Szoecs E, Wagner H (2019) Package ‘vegan’ v 2.5-6 https://cran.r-project.org, https://github.com/vegandevs/vegan

  • Ortega J, Navarrete D, Maldonado JE (2012) Non-invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico. Anim Biodiv Conserv 35:59–69

    Google Scholar 

  • Osborne MJ, Perkin JS, Gido KB, Turner TF (2014) Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes. Mol Ecol 23:5663–5679

    PubMed  PubMed Central  Google Scholar 

  • Osorio-Olvera L, Vijay Barve, Narayani Barve, Jorge Soberón, Falconi M (2018) ntbox: from getting biodiversity data to evaluating species distribution models in a friendly GUI environment. R package version 0.2.5.4. https://github.com/luismurao/ntbox

  • Oyler-McCance SJ, Fedy BC, Landguth EL (2013) Sample design effects in landscape genetics. Conserv Genet 14:275–285

    Google Scholar 

  • Pagacz S (2016) The effect of a major drainage divide on the gene flow of a semiaquatic carnivore, the Eurasian otter. J Mammal 97:1164–1176

    Google Scholar 

  • Paz-Vinas I, Blanchet S (2015) Dendritic connectivity shapes spatial patterns of genetic diversity: a simulation-based study. J Evol Biol 28:986–994

    CAS  PubMed  Google Scholar 

  • Peterman WE (2018) ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9:1638–1647

    Google Scholar 

  • Pflüger FJ, Balkenhol N (2014) A plea for simultaneously considering matrix quality and local environmental conditions when analysing landscape impacts on effective dispersal. Mol Ecol 23:2146–2156

    PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol model 190:231–259

    Google Scholar 

  • Poff NL, Olden JD, Strayer DL (2012) Climate change and freshwater fauna extinction risk. In: Hannah L (ed) Saving a million species. Island Press/Center for Resource Economics, Washington, D.C., pp 309–336

    Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev 6:847–859

    CAS  Google Scholar 

  • Quaglietta L, Fonseca VC, Hájková P, Mira A, Boitani L (2013) Fine-scale population genetic structure and short-range sex-biased dispersal in a solitary carnivore, Lutra lutra. J Mammal 94:561–571

    Google Scholar 

  • Ramos-Rosas NN, Valdespino C, García-Hernández J, Gallo-Reynoso JP, Olguín EJ (2013) Heavy metals in the habitat and throughout the food chain of the Neotropical otter, Lontra longicaudis, in protected Mexican wetlands. Environ Monit Assess 185:1163–1173

    CAS  PubMed  Google Scholar 

  • Rémy A, Le Galliard JF, Gundersen G, Steen H, Andreassen HP (2011) Effects of individual condition and habitat quality on natal dispersal behaviour in a small rodent. J Anim Ecol 80:929–937

    PubMed  Google Scholar 

  • Rheingantz ML, Trinca CS (2015) Lontra longicaudis. The IUCN Red List of Threatened Species. e.T12304A21937379. https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T12304A21937379.en. Accessed on 20 Jan 2020

  • Rheingantz ML, de Menezes JFS, de Thoisy B (2014) Defining neotropical otter Lontra Longicaudis distribution, conservation priorities and ecological frontiers. Trop Conserv Sci 7:214–229

    Google Scholar 

  • Rico Y (2019) Landscape genetics of Mexican biodiversity: a review. Acta Univ 29:1894

    Google Scholar 

  • Romanowski J, Brzeziński M, Zmihorski M (2013) Habitat correlates of the Eurasian otter Lutra lutra recolonizing Central Poland. Acta Theriol 58:149–155

    Google Scholar 

  • Ruiz-Olmo J (1998) Influence of altitude on the distribution, abundance and ecology of the otter (Lutra lutra). In: Dunstone N, Gorman M (eds) Behaviour and ecology of riparian mammals. Cambridge University Press, Cambridge, pp 159–176

    Google Scholar 

  • Scrucca L (2013) GA: a package for genetic algorithms in R. J Stat Softw 53:1–37

    Google Scholar 

  • Selkoe KA, Scribner KT, Galindo HM (2016) Waterscape genetics—applications of landscape genetics to rivers, lakes, and seas. Landscape genetics. Wiley, Chichester, pp 220–246

    Google Scholar 

  • Shirk AJ, Landguth EL, Cushman SAA (2017) comparison of individual-based genetic distance metrics for landscape genetics. Mol Ecol Resour 17:1308–1317

    CAS  PubMed  Google Scholar 

  • Smith C, Whitworth A, Brunner E, Pomilia M (2020) Habitat selection and diet of the Neotropical otter (Lontra longicaudis) on the Osa Peninsula, Costa Rica, and range-wide monitoring recommendations. Neotrop Biodivers 6:62–74

    Google Scholar 

  • Soberón J, Osorio-Olvera L, Peterson AT (2017) Diferencias conceptuales entre modelación de nichos y modelación de áreasde distribución. Rev Mex Biodivers 88:437–441

    Google Scholar 

  • Spinola RM, Serfass TL, Brooks RP (2008) Survival and post-release movements of river otters translocated to western New York. Northeast Nat 15:13–24

    Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    CAS  PubMed  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thatte P, Chandramouli A, Tyagi A, Patel K, Baro P, Chhattani H, Ramakrishnan U (2019) Human footprint differentially impacts genetic connectivity of four wide-ranging mammals in a fragmented landscape. Divers Distrib. https://doi.org/10.1101/717777

    Article  Google Scholar 

  • Thomaz AT, Christie MR, Knowles LL (2016) The architecture of river networks can drive the evolutionary dynamics of aquatic populations. Evolution 70:731–739

    PubMed  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19

    Google Scholar 

  • Trigila AP, Gómez JJ, Cassini MH, Túnez JI (2016) Genetic diversity in the Neotropical river otter, Lontra longicaudis (Mammalia, Mustelidae), in the Lower Delta of Parana River, Argentina and its relation with habitat suitability. Hydrobiologia 768:287–298

    Google Scholar 

  • Trinca CS, Jaeger CF, Eizirik E (2013) Molecular ecology of the Neotropical otter (Lontra longicaudis): non-invasive sampling yields insights into local population dynamics. Biol J Linn Soc 109:932–948

    Google Scholar 

  • Tucker JM, Allendorf FW, Truex RL, Schwartz MK (2017) Sex-biased dispersal and spatial heterogeneity affect landscape resistance to gene flow in fisher. Ecosphere. https://doi.org/10.1002/ecs2.1839

    Article  Google Scholar 

  • Tyers T (2017) Riverdist: River Network Distance Computation and Applications. R package version 0.13.1. [Available at https://CRAN.R-project.org/package=riverdist.] Google Scholar

  • van Etten J (2017) Gdistance: Distances and routes on geographical grids. R package version 1.1‐5. Retrieved from https://CRAN.R-project.org/package=gdistance. Google Scholar

  • van Oosterhout C, Hutchinson WF, Willis DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Google Scholar 

  • Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67:3403–3411

    PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wultsch C, Caragiulo A, Dias-Freedman I, Quigley H, Rabinowitz S, Amato G (2016) Genetic diversity and population structure of Mesoamerican jaguars (Panthera onca): implications for conservation and management. PLoS ONE. https://doi.org/10.1371/journal.pone.0162377

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalewski A, Piertney S, Zalewska H, Lambin X (2009) Landscape barriers reduce gene flow in an invasive carnivore: geographical and local genetic structure of American mink in Scotland. Mol Ecol 18:1601–1615

    PubMed  Google Scholar 

  • Zalewski A, Zalewska H, Lunneryd SG, André C, Mikusiński G (2016) Reduced genetic diversity and increased structure in american mink on the Swedish coast following invasive species control. PLoS ONE. https://doi.org/10.1371/journal.pone.0157972

    Article  PubMed  PubMed Central  Google Scholar 

  • Zero VH, Barocas A, Jochimsen DM, Pelletier A, Giroux-Bougard X, Trumbo DR, Castillo JA, Evans Mack D, Linnell MA, Pigg RM, Hoisington-Lopez J, Spear SF, Murphy MA, Waits LP (2017) Complementary network-based approaches for exploring genetic structure and functional Connectivity in two vulnerable, endemic ground squirrels. Front Genet. https://doi.org/10.3389/fgene.2017.00081

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Geographic Society Early Career Grant (# WW-185ER-17), the Rufford Small Grants Foundation (ID-19592-2), the Genetics Society Heredity Fieldwork Grant, The SigmaXi Grant (G2019100191901176) and by research funds from the Instituto de Ecología, A.C. (20012-11-080) to CGR. MCLC is grateful with the Posgrado en Ciencias Biológicas of the Universidad Nacional Autónoma de México for the academic support provided during her doctoral studies and with the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the Doctoral scholarship (#414864). We thank Pablo C. Hernández-Romero, Tarcisio Solis and Luz Magali Sánchez Méndez for providing field assistance; Luz Magali Sánchez Méndez, Denisse Maldonado Sánchez and Cristina Bárcenas for laboratory assistance; and Alejandro Flores and Pierre Mokondoko for spatial data analysis assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Camila Latorre-Cardenas or Carla Gutiérrez-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latorre-Cardenas, M.C., Gutiérrez-Rodríguez, C., Rico, Y. et al. Do landscape and riverscape shape genetic patterns of the Neotropical otter, Lontra longicaudis, in eastern Mexico?. Landscape Ecol 36, 69–87 (2021). https://doi.org/10.1007/s10980-020-01114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01114-5

Keywords

Navigation