Skip to main content

Advertisement

Log in

How intensive agricultural practices and flow regulation are threatening fish spawning habitats and their connectivity in the St. Lawrence River floodplain, Canada

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Hydrological and land use changes for human purposes, have resulted in the increased fragmentation of river landscapes and the loss of aquatic habitats, leading to profound changes in fish diversity and productivity.

Objectives

In the fluvial Lake Saint-Pierre (St. Lawrence River, Canada), we studied how agricultural practices and water-flow regulation have impacted the area and connectivity of spawning habitats of northern pike (Esox lucius).

Methods

Northern pike spawning and nursery habitats were modelled over a 49-year period (1965–2013) to estimate effective spawning area under four contrasting hydrological conditions.

Results

Simulations coupled with land cover analyses revealed that natural flow conditions historically favourable for fish reproduction (high and stable water flows) have been lost due to human activities. The highest potential for reproduction and habitat connectivity have been lost due to (1) intensive agriculture and ploughing of natural vegetation in the upper floodplain that overlaps suitable spawning areas for northern pike, and (2) flow regulation that has lowered and shortened spring floods and dried spawning grounds more frequently.

Conclusions

To restore the St. Lawrence River functions, we propose to reconvert the portion of the floodplains that is vital to fish, but is currently used by intensive agriculture, into natural wetlands or perennial crops and to restore a more natural flow regime by extending the duration of floods between spawning and nursery periods. The highest priority for habitat restoration should target the most effective and recurrent spawning habitats, ditch and stream networks, and connected managed wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64(4):233–247

    Article  Google Scholar 

  • Baber MJ, Childers DL, Babbitt KJ, Anderson DH (2002) Controls on fish distribution and abundance in temporary wetlands. Can J Fish Aquat Sci 59(9):1441–1450

    Article  Google Scholar 

  • Bayler PB (1991) The flood pulse advantage and the restoration of river-floodplain systems. Regulat Rivers Res Manag 6:75–86

    Article  Google Scholar 

  • Beesley L, King AJ, Gawne B, Koehn JD, Price A, Nielsen D, Amtstaetter F, Meredith SN (2014) Optimising environmental watering of floodplain wetlands for fish. Freshw Biol 59:2024–2037

    Article  Google Scholar 

  • Beier P, Noss R (1998) Do habitat corridors provide connectivity? Conserv Biol 12:1241–1252

    Article  Google Scholar 

  • Bishop-Taylor R, Tulbure MG, Broich M (2015) Surface water network structure, landscape resistance to movement and flooding vital for maintaining ecological connectivity across Australia’s largest river basin. Landsc Ecol 30:2045–2065

    Article  Google Scholar 

  • Blanton P, Marcus WA (2014) Roads, railroads, and floodplain fragmentation due to transportation infrastructure along rivers. Ann Assoc Am Geogr 104:413–431

    Article  Google Scholar 

  • Boyer C, Chaumont D, Chartier I, Roy AG (2010) Impact of climate change on the hydrology of St. Lawrence tributaries. J Hydrol 384(1–2):65–83

    Article  Google Scholar 

  • Boët P, Belliard J, Berrebi-dit-Thomas R, Tales E (1999) Multiple human impacts by the City of Paris on fish communities in the Seine river basin, France. Hydrobiologia 410:59–68

    Article  Google Scholar 

  • Brodeur P, Mingelbier M, Morin J (2004) Impacts des variations hydrologiques sur les poissons des marais aménagés du Saint-Laurent fluvial. Le Naturaliste Canadien 128(2):66–77

    Google Scholar 

  • Brodeur P, Mingelbier M, Morin J (2006) Impact de la régularisation du débit des Grands Lacs sur l’habitat de reproduction des poissons dans la plaine inondable du fleuve Saint-Laurent. Le Naturaliste Canadien 130:60–68

    Google Scholar 

  • Brodeur P, Simard A, Théberge M, Bacon R (2016) Suivi du segment 8 du complexe d’aménagement de Baie-du-Febvre / Nicolet Sud Bilan des activités 2009–2014. Direction de la gestion de la faune de la Mauricie et du Centre-du-Québec, Ministère des Forêts de la Faune et des Parcs, Trois-Rivières, p 69

    Google Scholar 

  • Caldwell IR, Gergel SE (2013) Thresholds in seascape connectivity: influence of mobility, habitat distribution, and current strength on fish movement. Landsc Ecol 28(10):1937–1948

    Article  Google Scholar 

  • Carpentier A (2003) La régularisation du Saint-Laurent. Le Naturaliste Canadien 127:102–113

    Google Scholar 

  • Casselman JM (1978) Effects of environmental factors on growth, survival, activity, and exploitation of northern pike. Am Fish Soc Spec Publ 11:114–128

    Google Scholar 

  • Casselman JM, Lewis CA (1996) Habitat requirements of northern pike (Esox lucius). Can J Fish Aquat Sci 53:161–174

    Article  Google Scholar 

  • Centre Saint-Laurent (1998) Le fleuve en bref: capsules-éclair sur l'état du Saint-Laurent. Environnement Canada, Région du Québec: Saint-Laurent Vision 2000, Québec, p 121

  • de la Chenelière V, Brodeur P, Mingelbier M (2014) Restauration des habitats du lac Saint-Pierre: un prérequis au rétablissement de la perchaude. Le Naturaliste Canadien 138:50–61

    Article  Google Scholar 

  • Douven W, Buurman J, Beevers L, Verheij H, Goichot M, Nguyen NA, Truong HT, Ngoc HM (2012) Resistance versus resilience approaches in road planning and design in delta areas: Mekong floodplains in Cambodia and Vietnam. J Environ Plan Manag 55:1289–1310

    Article  Google Scholar 

  • Doyle MW, Stanley EH, Havlick DG, Kaiser MJ, Steinbach G, Graf WL, Galloway GE, Riggsbee JA (2008) Aging infrastructure and ecosystem restoration. Science 319:286–287

    Article  CAS  PubMed  Google Scholar 

  • ECCC and MDDELCC (2018) Land cover mapping of the St. Lawrence Lowlands, circa (2014) Environment and Climate Change Canada and Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques. St. Lawrence Action Plan, Québec, p 49

    Google Scholar 

  • Farrell JM, Murry BA, Leopold DJ, Halpern A, Beland Rippke M, Godwin KS, Hafner SD (2010) Water-level regulation and coastal wetland vegetation in the upper St. Lawrence River: inferences from historical aerial imagery, seed banks, and Typha dynamics. Hydrobiologia 647:127–144

    Article  Google Scholar 

  • Fecteau M, Poissant L (2001) Survol des impacts environnementaux potentiels liés à la production de maïs à des fins énergétiques au Québec. Environnement Canada, Saint-Laurent Vision 2000, Montréal, p 78

    Google Scholar 

  • Fernandes I, Penha J, Zuanon J (2015) Size-dependent response of tropical wetland fish communities to changes in vegetation cover and habitat connectivity. Landsc Ecol 30:1421–1434

    Article  Google Scholar 

  • Fortin P, Martin S, Plante A (2002) Post-traitement, validation et intégration des données LIDAR dans le modèle numérique de terrain du fleuve Saint-Laurent. Rapport technique SMC Québec-Section Hydrologie RT-120, Environnement Canada, Sainte-Foy, préparé par le Groupe en Besoin de Données Communes du Groupe d'étude international sur le lac Ontario et le fleuve Saint-Laurent (Commission mixte internationale), pp 30 + annexes

  • Foubert A, Le-Pichon C, Mingelbier M, Farrell JM, Morin J, Lecomte F (2018) Modeling the effective spawning and nursery habitats of northern pike within a large spatiotemporally variable river landscape (St. Lawrence River, Canada). Limnol Oceanogr 64(2):803–819

    Article  Google Scholar 

  • Gagliardi B, Pettigrove V (2013) Removal of intensive agriculture from the landscape improves aquatic ecosystem health. Agric Ecosyst Environ 176:1–8

    Article  Google Scholar 

  • Gorski K, De Leeuw JJ, Winter HV, Vekhov DA, Minin AE, Buijse AD, Nagelkerke LAJ (2011) Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature and habitat complexity. Freshw Biol 56(11):2210–2225

    Article  Google Scholar 

  • Goto D, Hamel MJ, Hammen JJ, Rugg ML, Pegg MA, Forbes VE (2015) Spatiotemporal variation in flow-dependent recruitment of long-lived riverine fish: Model development and evaluation. Ecol Model 296:79–92

    Article  Google Scholar 

  • Hanke MH, Lambert JD, Smith KJ (2013) Utilization of a multicriteria least cost path model in an aquatic environment. Int J Geogr Inf Sci 28(8):1642–1657

    Article  Google Scholar 

  • Holland LE, Huston ML (1984) Relationship of young-of-the-year northern pike to aquatic vegetation types in backwaters of the upper Mississippi River. N Am J Fish Manag 4:514–522

    Article  Google Scholar 

  • Ishiyama N, Akasaka T, Nakamura F (2014) Mobility-dependent response of aquatic animal species richness to a wetland network in an agricultural landscape. Aquat Sci 76(3):437–449

    Article  Google Scholar 

  • Jeffres C, Moyle P (2012) When good fish make bad decisions: Coho Salmon in an ecological trap. N Am J Fish Manag 32(1):87–92

    Article  Google Scholar 

  • Johnson FH (1957) Northern pike year-class strength and spring water levels. Trans Am Fish Soc 86:285–293

    Article  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 12:110–127

    Google Scholar 

  • Le Pichon C, Gorges G, Boët P, Baudry J, Goreaud F, Faure T (2006a) A spatially explicit resource-based approach for managing stream fishes in riverscapes. Environ Manag 37(3):322–335

    Article  Google Scholar 

  • Le Pichon C, Gorges G, Faure T, Boussard H (2006b) Anaqualand 2.0: freeware of distances calculations with frictions on a corridor. Cemagref, Antony. https://www6.rennes.inra.fr/sad/Outils-Produits/Outils-informatiques/Anaqualand. Accessed 30 Mar 2020

  • Le Pichon C, Mingelbier M, Legros M, Foubert A, Brodeur P (2018) Effets du réseau routier sur la connectivité des frayères du grand brochet (Esox lucius) au lac Saint-Pierre (fleuve Saint-Laurent, Canada). Le Naturaliste Canadien 142:78–91

    Article  Google Scholar 

  • Martin J, Létourneau G (2011) Changements dans les milieux humides du fleuve Saint-Laurent de 1970 à 2002. Environnement Canada, Direction générale des sciences et de la technologie, Monitoring et surveillance de la qualité de l'eau au Québec, Rapport technique numéro 511, p 302

  • Matsuzaki S-IS, Terui A, Kodama K, Tada M, Yoshida T, Washitani I (2011) Influence of connectivity, habitat quality and invasive species on egg and larval distributions and local abundance of crucian carp in Japanese agricultural landscapes. Biol Conserv 144(8):2081–2087

    Article  Google Scholar 

  • Miehls SM, Dettmers JM (2011) Factors influencing habitat shifts of age-0 yellow perch in Southwestern Lake Michigan. Trans Am Fish Soc 140(5):1317–1329

    Article  Google Scholar 

  • Mingelbier M, Brodeur P, Morin J (2008) Spatially explicit model predicting the spawning habitat and early stage mortality of Northern pike (Esox lucius) in a large system: the St. Lawrence River between 1960 and 2000. Hydrobiologia 601(1):55–69

    Article  Google Scholar 

  • Mingelbier M, Douguet T (1999) Répertoire-synthèse des aménagements fauniques de la plaine inondable du lac Saint-Pierre. Direction de la faune et des habitats, Société de la faune et des parcs du Québec, p 37

    Google Scholar 

  • Morin J, Champoux O, Martin S, Turgeon K (2005) Modélisation intégrée de la réponse de l’écosystème dans le fleuve Saint-Laurent: Rapport final des activités entreprises dans le cadre du Plan d’étude sur la régularisation du lac Ontario et du fleuve Saint-Laurent Rapport scientifique - RS-108. SMC-Hydrologie, Environnement Canada, Québec, p 139

    Google Scholar 

  • Morin J, Leclerc M, Secretan Y, Boudreau P (2000) Integrated two-dimensional macrophytes-hydrodynamic modeling. J Hydraul Res 38:163–172

    Article  Google Scholar 

  • Morin J, Mingelbier M, Bechara JA, Champoux O, Secretan Y, Martin J, Frenette JJ (2003) Emergence of new explanatory variables for 2D habitat modelling in large rivers: The St. Canadian Water Resources Journal, Lawrence Experience, p 28

  • Morin J, Bouchard A (2000) Les bases de la modélisation du tronçon Montréal / Trois-Rivières. Rapport scientifique SMC-Hydrométrie RS-100. Environnement Canada, p 56

  • Mortsch L, Hengeveld H, Lister M, Lofgren B, Quinn F, Slivitky M, Wenger L (2000) Climate change impacts on the hydrology of the great lakes—St. Lawrence. Syst Can Water Ressour J 25(2):153–179

    Article  Google Scholar 

  • Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world's large river systems. Science 308:405–408

    Article  CAS  PubMed  Google Scholar 

  • Ospina-Alvarez A, Parada C, Palomera I (2012) Vertical migration effects on the dispersion and recruitment of European anchovy larvae: from spawning to nursery areas. Ecol Model 231:65–79

    Article  Google Scholar 

  • Peake S (2004) Effect of approach velocity on impingement of juvenile northern pike at water intake screens. N Am J Fish Manag 24(2):390–396

    Article  Google Scholar 

  • Raat AJP (2001) Ecological rehabilitation of the Dutch part of the River Rhine with special attention to the fish. Regul Rivers Res Manag 17(2):131–144

    Article  Google Scholar 

  • Richard G, Côté D, Mingelbier M, Jobin B, Morin J, Brodeur P (2011) Utilisation du sol dans la plaine inondable du lac Saint-Pierre (fleuve Saint-Laurent) durant les périodes 1950, 1964 et 1997: interprétation de photos aériennes, numérisation et préparation d’une base de données géoréférencées. Ministère des Ressources naturelles et de la Faune, Gouvernement du Québec, Québec, p 42

    Google Scholar 

  • Roy M, Le Pichon C (2017) Modelling functional fish habitat connectivity in rivers: a case study for prioritizing restoration actions targeting brown trout. Aquat Conserv Mar Freshw Ecosyst 27:927–937

    Article  Google Scholar 

  • Schiemer F, Keckeis H, Kamler E (2003) The early life history stages of riverine fish: ecophysiological and environmental bottlenecks. Comp Biochem Physiol 133:439–449

    Article  Google Scholar 

  • Schiemer F, Keckeis H, Reckendorfer W, Winkler G (2001) The "inshore retention concept" and its significance for large rivers. River Systems 12(2–4):509–516

    Article  Google Scholar 

  • Sheaves M, Baker R, Nagelkerken I, Connolly RM (2014) True value of estuarine and coastal nurseries for fish: incorporating complexity and dynamics. Estuar Coasts 38(2):401–414

    Article  Google Scholar 

  • Smith BM, Farrell JM, Underwood HB, Smith SJ (2007) Year-class formation of upper St. Lawrence river northern pike. N Am J Fish Manag 27(2):481–491

    Article  Google Scholar 

  • Timm AL, Pierce RB (2015) Vegetative substrates used by larval northern pike in Rainy and Kabetogama Lakes. Minn Ecol Freshw Fish 24(2):225–233

    Article  Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:3

    Article  Google Scholar 

  • Turgeon K, Morin J (2005) Modelling submerged macrophytes distribution: evaluation of models transferability in three St. Lawrence River sections scientific report MSC Québec –Hydrology Section RS-105. Environment Canada, Sainte-Foy, p 61

    Google Scholar 

  • Van der Ree R, Jaeger JAG, Van der Grift EA, Clevenger AP (2011) Effects of roads and traffic on wildlife populations and landscape function: road ecology is moving towards larger scales. Ecol Soc 16(1):48

    Article  Google Scholar 

  • Volk XK, Gattringer JP, Otte A, Harvolk-Schoïning S (2018) Connectivity analysis as a tool for assessing restoration success. Landsc Ecol 33:371–387

    Article  Google Scholar 

  • Washitani I (2007) Restoration of biologically-diverse floodplain wetlands including paddy fields. Glob Environ Res 11:135–140

    Google Scholar 

  • Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515

    Article  Google Scholar 

  • Wohl E (2017) Connectivity in rivers. Prog Phys Geogr 41(3):345–362

    Article  Google Scholar 

  • Wohl E, Lane SN, Wilcox AC (2015) The science and practice of river restoration. Water Resour Res 51:5974–5997

    Article  Google Scholar 

Download references

Acknowledgements

This study would not have been possible without the contribution of John Farrell and the members of the Thousand Islands Biological Station for conducting field experiences and Sylvain Martin for kindly providing hydrological data. A special thank goes to Dr. Mathieu Cusson and Julian J. Dodson for revisions of earlier version of the manuscript. This study is part of A.F.’s Ph.D. thesis. Financial support was provided by grants from the “Chaire de Recherche sur les Espèces Aquatiques Exploitées”, the Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), the “Ressources Aquatiques Québec”, and the “Commission permanente de coopération franco-québécoise”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Mingelbier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to the “Chaire de Recherche sur les Espèces Aquatiques Exploitées” 20 (CREAE).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2280 kb)

Supplementary file2 (DOCX 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foubert, A., Lecomte, F., Brodeur, P. et al. How intensive agricultural practices and flow regulation are threatening fish spawning habitats and their connectivity in the St. Lawrence River floodplain, Canada. Landscape Ecol 35, 1229–1247 (2020). https://doi.org/10.1007/s10980-020-00996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-00996-9

Keywords

Navigation