Skip to main content

Advertisement

Log in

Demographic, ecological, and life-history traits associated with bird population response to landscape fragmentation in Europe

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Human land-use transformation has fragmented natural landscapes around the world, with fragmentation currently being considered a global threat to biodiversity conservation. Landscape fragmentation, however, does not affect all species similarly, suggesting that some species characteristics may render species more sensitive to fragmentation than others.

Objectives

The aim of this study was to test whether demographic, ecological, and life-history traits are associated with vulnerability to landscape fragmentation in European breeding bird species.

Methods

Effective mesh size per area unit was used as an index of landscape fragmentation. Vulnerability to fragmentation for every bird species was estimated as population response to fragmentation per se (controlling for habitat loss due to fragmenting elements), with more vulnerable species showing a negative relationship between population density and fragmentation among countries, and less vulnerable species showing no (or even a positive) relationship. Comparative analyses controlled for similarity among species due to common phylogenetic descent.

Results

Response to fragmentation was more often positive than negative, and it was positively related to population size, migration distance, and body mass, and negatively related to age at first reproduction. The relationship between response to fragmentation and population size did not allow us to assess whether being less abundant was the cause or the consequence of being vulnerable to fragmentation. Response to fragmentation was not significantly related to other demographic, ecological, and life-history characteristics.

Conclusions

These results suggest that small-sized resident bird species with delayed maturity are particularly vulnerable to landscape fragmentation. Future conservation efforts should target these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1974) A new look at statistical model identification. IEEE Trans Autom Control 19:716–723

    Google Scholar 

  • Belliure J, Sorci G, Møller AP, Clobert J (2000) Dispersal distances predict subspecies richness in birds. J Evol Biol 13:480–487

    Article  Google Scholar 

  • Benchimol M, Peres CA (2015) Predicting local extinctions of Amazonian vertebrates in forest islands created by a mega dam. Biol Conserv 187:61–72

    Article  Google Scholar 

  • Bendel RB, Afifi AA (1977) Comparison of stopping rules in forward “stepwise” regression. J Am Stat Assoc 72:46–53

    Google Scholar 

  • Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 88–106

    Chapter  Google Scholar 

  • Benscoter AM, Reece JS, Noss RF, Brandt LA, Mazzotti FJ, Romañach SS, Watling JI (2013) Threatened and endangered subspecies with vulnerable ecological traits also have high susceptibility to sea level rise and habitat fragmentation. PLoS ONE 8:e70647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betts MG, Forbes GJ, Diamond AW (2007) Thresholds in songbird occurrence in relation to landscape structure. Conserv Biol 21:1046–1058

    Article  PubMed  Google Scholar 

  • Betts MG, Fahrig L, Hadley AS, Halstead KE, Bowman J, Robinson WD, Wiens JA, Lindenmayer DB (2014) A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography 37:517–527

    Article  Google Scholar 

  • BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife Conservation Series No 12. BirdLife International, Wageningen

  • Bolger DT, Alberts AC, Soulé ME (1991) Occurrence patterns of bird species in habitat fragments: sampling, extinction, and nested species subsets. Am Nat 137:155–166

    Article  Google Scholar 

  • Boyle WA, Sigel BJ (2015) Ongoing changes in the avifauna of La Selva Biological Station, Costa Rica: twenty-three years of Christmas Bird Counts. Biol Conserv 188:11–21

    Article  Google Scholar 

  • Carrascal LM, Seoane J, Villén-Pérez S (2012) Temperature and food constraints in wintering birds: an experimental approach in montane Mediterranean oakwoods. Community Ecol 13:221–229

    Article  Google Scholar 

  • Central Intelligence Agency (2016) CIA world factbook. Central Intelligence Agency, Washington, DC. https://www.cia.gov/library/publications/the-world-factbook. Accessed 2 August 2017

  • Chalfoun AD, Thompson FR, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and meta-analysis. Conserv Biol 16:306–318

    Article  Google Scholar 

  • Collinge SK (2009) Ecology of fragmented landscapes. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Collingham YC, Huntley B, Altwegg R, Barnard P, Beveridge OS, Gregory RD, Mason LR, Oschadleus HD, Simmons RE, Willis SG, Green RE (2014) Prediction of mean adult survival rates of southern African birds from demographic and ecological covariates. Ibis 156:741–754

    Article  Google Scholar 

  • Cosson JF, Ringuet S, Claessens O, de Massary JC, Dalecky A, Villiers JF, Granjon L, Pons JM (1999) Ecological changes in recent land-bridge islands in French Guiana, with emphasis on vertebrate communities. Biol Conserv 91:213–222

    Article  Google Scholar 

  • Cramp S, Perrins CM (eds) (1977–1994) Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic, vols 1–9. Oxford University Press, Oxford

  • Davies KF, Margules CR, Lawrence JF (2000) Which traits of species predict population declines in experimental forest fragments? Ecology 81:1450–1461

    Article  Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85:265–271

    Article  Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507–514

    Article  Google Scholar 

  • Didham RK (2010) Ecological consequences of habitat fragmentation. In: Encyclopedia of life sciences. Wiley: Chichester

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170

    Article  Google Scholar 

  • Doherty PF, Grubb TC (2002) Survivorship of permanent-resident birds in a fragmented forested landscape. Ecology 83:844–857

    Article  Google Scholar 

  • Ekroos J, Heliölä J, Kuussaari M (2010) Homogenization of lepidopteran communities in intensively cultivated agricultural landscapes. J Appl Ecol 47:459–467

    Article  Google Scholar 

  • European Environment Agency (2017) Land cover country fact sheets 2012. European Environment Agency, Copenhagen. https://www.eea.europa.eu/themes/landuse/land-cover-country-fact-sheets/land-cover-country-fact-sheets. Accessed 27 September 2018

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (1998) When does fragmentation of breeding habitat affect population survival? Ecol Model 105:273–292

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14:21

    Article  Google Scholar 

  • Feeley KJ, Gillespie TW, Lebbin DJ, Walter HS (2007) Species characteristics associated with extinction vulnerability and nestedness rankings of birds in tropical forest fragments. Anim Conserv 10:493–501

    Article  Google Scholar 

  • Fisher DO, Owens IPF (2004) The comparative method in conservation biology. Trends Ecol Evol 19:391–398

    Article  PubMed  Google Scholar 

  • Foufopoulos J, Ives AR (1999) Reptile extinctions on land-bridge islands: life-history attributes and vulnerability to extinction. Am Nat 153:1–25

    Article  PubMed  Google Scholar 

  • Garamszegi LZ, Møller AP (2007) Prevalence of avian influenza and host ecology. Proc R Soc B 274:2003–2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Glutz von Blotzheim UN, Bauer KM (eds) (1985–1997). Handbuch der Vögel Mitteleuropas, vols 1–14. AULA-Verlag, Wiesbaden

  • Gonzalez A, Chaneton EJ (2002) Heterotroph species extinction, abundance and biomass dynamics in an experimentally fragmented microecosystem. J Anim Ecol 71:594–602

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Son D-X, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagemeijer WJM, Blair MJ (1997) The EBCC atlas of European breeding birds: their distribution and abundance. T & AD Poyser, London

    Google Scholar 

  • Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12:321–334

    Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Ibáñez I, Katz DSW, Peltier D, Wolf SM, Connor Barrie BT (2014) Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J Ecol 102:882–895

    Article  Google Scholar 

  • Inger R, Gregory R, Duffy JP, Stott I, Voríšek P, Gaston KJ (2015) Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol Lett 18:28–36

    Article  PubMed  Google Scholar 

  • Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol 15:115–130

    Article  Google Scholar 

  • Jaeger JAG, Bertiller R, Schwick C, Müller K, Steinmeier C, Ewald KC, Ghazoul J (2008) Implementing landscape fragmentation as an indicator in the Swiss Monitoring System of Sustainable Development (MONET). J Environ Manage 88:737–751

    Article  PubMed  Google Scholar 

  • Jaeger JAG, Bowman J, Brennan J, Fahrig L, Bert D, Bouchard J, Charbonneau N, Frank K, Gruber B, von Toschanowitz KT (2005) Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. Ecol Model 185:329–348

    Article  Google Scholar 

  • Jaeger JAG, Soukup T, Madriñán LF, Schwick C, Kienast F (2011) Landscape fragmentation in Europe. Joint EEA-FOEN report. EEA Report No. 2/2011. European Environment Agency, Copenhagen; Swiss Federal Office for the Environment, Bern. http://www.eea.europa.eu/publications/landscape-fragmentation-in-europe. Accessed 8 May 2014

  • Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, Hillegass M, Lyon BN, Metzger GA, Olandese ML, Pepe D, Silvers GA, Suresch HN, Thompson TN, Trexler CM, Williams GE, Williams NC, Williams SE (2007) Does size matter for dispersal distance? Glob Ecol Biogeogr 16:415–425

    Article  Google Scholar 

  • Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

    Article  CAS  PubMed  Google Scholar 

  • Karr JR (1990) Avian survival rates and the extinction process on Barro Colorado Island, Panama. Conserv Biol 4:391–397

    Article  Google Scholar 

  • Keinath DA, Doak DF, Hodges KE, Prugh LR, Fagan W, Şekercioğlu ÇH, Buchart SHM, Kauffman M (2017) A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob Ecol Biogeogr 26:115–127

    Article  Google Scholar 

  • Khimoun A, Eraud C, Ollivier A, Arnoux E, Rocheteau V, Bely M, Lefol E, Delpuech M, Carpentier M-L, Leblond G, Levesque A, Charbonnel A, Faivre B, Garnier S (2016) Habitat specialization predicts genetic response to fragmentation in tropical birds. Mol Ecol 25:3831–3844

    Article  PubMed  Google Scholar 

  • Kormann U, Rösch V, Batáry P, Tscharntke T, Orci KM, Samu F, Scherber C (2015) Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers Distrib 21:1204–1217

    Article  Google Scholar 

  • Kotiaho JS, Kaitala V, Komonen A, Päivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci USA 102:1963–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurance WF (1991) Ecological correlates of extinction proneness in Australian tropical rain forest mammals. Conserv Biol 5:79–89

    Article  Google Scholar 

  • Liao J, Li Z, Hiebeler DE, El-Bana M, Deckmyn G, Nijs I (2013) Modelling plant population size and extinction thresholds from habitat loss and habitat fragmentation: effects of neighbouring competition and dispersal strategy. Ecol Model 268:9–17

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2015) Mesquite: a modular system for evolutionary analysis, version 3.04. http://mesquiteproject.org. Accessed 26 October 2018

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Article  Google Scholar 

  • McCarthy MA, Citroen R, McCall SC (2008) Allometric scaling and Bayesian priors for annual survival of birds and mammals. Am Nat 172:216–222

    Article  PubMed  Google Scholar 

  • McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  CAS  PubMed  Google Scholar 

  • Møller AP, Garamszegi LZ (2012) Between individual variation in risk-taking behavior and its life history consequences. Behav Ecol 23:843–853

    Article  Google Scholar 

  • Møller AP, Soler JJ, Vivaldi MM (2010) Spatial heterogeneity in distribution and ecology of Western Palearctic birds. Ecology 91:2769–2782

    Article  PubMed  Google Scholar 

  • Morganti M, Assandri G, Aguirre JI, Ramírez A, Caffi M, Pulido F (2017) How residents behave: home range flexibility and dominance over migrants in a Mediterranean passerine. Anim Behav 123:293–304

    Article  Google Scholar 

  • Morosinotto C, Villers A, Varjonen R, Korpimäki E (2017) Food supplementation and predation risk in harsh climate: interactive effects on abundance and body condition of tit species. Oikos 126:863–873

    Article  Google Scholar 

  • Morris WF, Pfister CA, Tuljapurkar S, Haridas CV, Boggs CL, Boyce MS, Bruna EM, Church DR, Coulson T, Doak DF, Forsyth S, Gaillard J-M, Horvitz CC, Kalisz S, Kendall BE, Knight TM, Lee CT, Menges ES (2008) Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89:19–25

    Article  PubMed  Google Scholar 

  • Newbold T, Scharlemann JPW, Butchart SHM, Şekercioğlu ÇH, Alkemade R, Booth H, Purves DW (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc B 280:20122131

    Article  PubMed  PubMed Central  Google Scholar 

  • Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Pöyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979

    PubMed  Google Scholar 

  • O’Grady JJ, Reed DH, Brook BW, Frankham R (2004) What are the best correlates of predicted extinction risk? Biol Conserv 118:513–520

    Article  Google Scholar 

  • Owens IPF, Bennett PM (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci USA 97:12144–12148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536

    Article  Google Scholar 

  • Pavlacky DC, Possingham HP, Goldizen AW (2015) Integrating life history traits and forest structure to evaluate the vulnerability of rainforest birds along gradients of deforestation and fragmentation in eastern Australia. Biol Conserv 188:89–99

    Article  Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Purvis A, Agapow P-M, Gittleman JL, Mace GM (2000a) Nonrandom extinction and the loss of evolutionary history. Science 288:328–330

    Article  CAS  PubMed  Google Scholar 

  • Purvis A, Jones KE, Mace GM (2000b) Extinction. BioEssays 22:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New York

    Google Scholar 

  • Sæther B-E (1987) The influence of body-weight on the covariation between reproductive traits in European birds. Oikos 48:79–88

    Article  Google Scholar 

  • Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105

    Article  Google Scholar 

  • Şekercioğlu ÇH (2007) Conservation ecology: area trumps mobility in fragment bird extinctions. Curr Biol 17:R283–R286

    Article  PubMed  CAS  Google Scholar 

  • Smith KT, Kirol CP, Beck JL, Blomquist FC (2014) Prioritizing winter habitat quality for greater sage-grouse in a landscape influenced by energy development. Ecosphere 5:15

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing, version 3.1.0. R Foundation for Statistical Computing, Vienna

  • Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc B 267:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239

    Article  Google Scholar 

  • Urquiza-Haas T, Peres CA, Dolman PM (2009) Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatán Peninsula, Mexico. Biol Conserv 142:134–148

    Article  Google Scholar 

  • Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10:219–229

    Article  PubMed  Google Scholar 

  • Vance MD, Fahrig L, Flather CH (2003) Effect of reproductive rate on minimum habitat requirements of forest-breeding birds. Ecology 84:2643–2653

    Article  Google Scholar 

  • Villard M-A, Trzcinski MK, Merriam G (1999) Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv Biol 13:774–783

    Article  Google Scholar 

  • Wade TG, Riitters KH, Wickham JD, Jones KB (2003) Distribution and causes of global forest fragmentation. Conserv Ecol 7:7

    Google Scholar 

  • Wang Y, Thornton DH, Ge D, Wang S, Ding P (2015) Ecological correlates of vulnerability to fragmentation in forest birds on inundated subtropical land-bridge islands. Biol Conserv 191:251–257

    Article  Google Scholar 

  • Wang Y, Zhang J, Feeley KJ, Jiang P, Ding P (2009) Life-history traits associated with fragmentation vulnerability of lizards in the Thousand Island Lake, China. Anim Conserv 12:329–337

    Article  Google Scholar 

  • Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189

    Article  PubMed  Google Scholar 

  • Wilson MC, Chen X-Y, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu J, Pimm SL, Robinson SK, Russo SE, Si X, Wilcove DS, Wu J, Yu M (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227

    Article  Google Scholar 

  • With KA, King AW (1999) Extinction thresholds for species in fractal landscapes. Conserv Biol 13:314–326

    Article  Google Scholar 

  • Zavaleta E, Pasari J, Moore J, Hernández D, Suttle KB, Wilmers CC (2009) Ecosystem responses to community disassembly. Ann N Y Acad Sci 1162:311–333

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Juan Soler for helping with statistical analysis. JJC was funded by the Spanish National Research Council (Grant EST001196) and by the Spanish Ministry of Economy and Competitiveness (Grant CGL2013-48193-C3-3-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Javier Cuervo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuervo, J.J., Møller, A.P. Demographic, ecological, and life-history traits associated with bird population response to landscape fragmentation in Europe. Landscape Ecol 35, 469–481 (2020). https://doi.org/10.1007/s10980-019-00959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-019-00959-9

Keywords

Navigation