Skip to main content

Advertisement

Log in

Estimating the permeability of linear infrastructures using recapture data

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Barrier effects of Large-scale Transportation Infrastructures (LTIs) are among the main factors contributing to the fragmentation of habitats. The reduction of dispersal across LTIs can drive small, local populations to extinction. To understand how LTIs modify dispersal, efficient and workable evaluation methods are required.

Objectives

We developed a method based on Mark-Release-Recapture surveys to estimate barrier effects of LTIs that could be easily applied in various landscape contexts and on any mobile species.

Methods

Our method uses dispersal kernels of animal movements to calculate an expected probability of crossing any particular linear feature. This probability is then compared to observed crossing events to estimate the barrier effect. We used simulations to test the reliability of our method and applied this framework on the butterfly Maniola jurtina in a landscape fragmented by a motorway and a railway.

Results

Simulations showed that our method was able to detect efficiently even weak barrier effects given that enough data are available. When sample size was reduced, our method was able to detect barrier effects only when the infrastructure width was small in comparison to the average movement capacity of organisms. In our case study, both infrastructures acted as significant barriers.

Conclusions

The power of our method is to use MRR data which are more representative of population processes than telemetry monitoring and are not limited by time-lag involved in genetic studies. This framework is of particular interest for conservation studies in order to assess how individual movements are modified by linear infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ascensao F, Mata C, Malo JE, Ruiz-Capillas P, Silva C, Silva AP, Santos-Reis M, Fernandes C (2016) Disentangle the causes of the road barrier effect in small mammals through genetic patterns. PLoS ONE 11(3):e0151500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88(2):310–326.

    Article  PubMed  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landscape Ecol 22(8):1117–1129.

    Article  Google Scholar 

  • Balkenhol N, Waits LP (2009) Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol Ecol 18(20):4151–4164.

    Article  PubMed  Google Scholar 

  • Bartoszek J, Greenwald KR (2009) A population divided: railroad tracks as barriers to gene flow in an isolated population of marbled salamanders (Ambystoma opacum). Herpetol Conserv Biol 4(2):191–197

    Google Scholar 

  • Bartzke GS, May R, Solberg EJ, Rolandsen CM, Røskaft E (2015) Differential barrier and corridor effects of power lines, roads and rivers on moose (Alces alces) movements. Ecosphere 6(4):1–17

    Article  Google Scholar 

  • Baxter-Gilbert JH, Riley JL, Neufeld CJH, Litzgus JD, Lesbarrères D (2015) Road mortality potentially responsible for billions of pollinating insect deaths annually. J Insect Conserv 19(5):1029–1035

    Article  Google Scholar 

  • Beyer HL, Gurarie E, Börger L, Panzacchi M, Basille M, Herfindal I, Van Moorter V, Lele RS, Matthiopoulos J (2016) ’You shall not pass!’: quantifying barrier permeability and proximity avoidance by animals. J Anim Ecol 85(1):43–53

    Article  PubMed  Google Scholar 

  • Borenstein M, Hedges LV, Higgins JP, Rothstein HR (2009) Introduction to meta-analysis, introduction to meta-analysis. Wiley, Chichester

    Book  Google Scholar 

  • Brakefield PM (1982) Ecological studies on the butterfly Maniola Jurtina in Britain. I. Adult behaviour, microdistribution and dispersal. J Anim Ecol 51:713–726.

    Article  Google Scholar 

  • Breyne P, Mergeay J, Casaer J (2014) Roe deer population structure in a highly fragmented landscape. Eur J Wildl Res 60(6):909–917.

    Article  Google Scholar 

  • Bubová T, Kulma M, Vrabec V, Nowicki P (2016) Adult longevity and its relationship with conservation status in European butterflies. J Insect Conserv 20:1021–1032.

    Article  Google Scholar 

  • Byrne AW, Quinn JL, O’Keeffe JJ, Green S, Paddy Sleeman D, Wayne Martin S, Davenport J (2014) Large-scale movements in European badgers: has the tail of the movement kernel been underestimated? J Anim Ecol 83(4):991–1001.

    Article  PubMed  Google Scholar 

  • Colchero F, Conde DA, Manterola C, Chávez C, Rivera A, Ceballos G (2011) Jaguars on the move: modeling movement to mitigate fragmentation from road expansion in the Mayan Forest. Anim Conserv 14(2):158–166.

    Article  Google Scholar 

  • Coulon A, Guillot G, Cosson J-F, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15(6):1669–1679.

    Article  CAS  PubMed  Google Scholar 

  • Delattre T, Burel F, Humeau A, Stevens VM, Vernon P, Baguette M (2010) Dispersal mood revealed by shifts from routine to direct flights in the meadow brown butterfly Maniola jurtina. Oikos 119(12):1900–1908.

    Article  Google Scholar 

  • Devroye L (1986) Complexity questions in non-uniform random variate generation, non-uniform random variate generation. Springer, New York

    Book  Google Scholar 

  • Dover J, Settele J (2009) The influences of landscape structure on butterfly distribution and movement: a review. J Insect Conserv 13(1):3–27.

    Article  Google Scholar 

  • Dulac J (2013) Global land transport infrastructure requirements: estimating road and railway infrastructure capacity and costs to 2050. Technical report, International Energy Agency

  • Dyer SJ, O’Neill JP, Wasel SM, Boutin S (2002) Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can J Zool 80(5):839–845.

    Article  Google Scholar 

  • EEA (2015) The European environment—state and outlook 2015: synthesis report. European Environment Agency, Copenhagen, Technical report

  • Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040.

    Article  PubMed  Google Scholar 

  • Fagan WF, Holmes EE (2006) Quantifying the extinction vortex. Ecol Lett 9(1):51–60.

    PubMed  Google Scholar 

  • Fahrig L, Rytwinski T (2009) Effects of roads on animal abundance: an empirical review and synthesis. Ecol Soc 14(1):21

    Article  Google Scholar 

  • Forman RT, Alexander LE (1998) Roads and their major ecological effects. Ann Rev Ecol Evol Syst 29:207–231.

    Article  Google Scholar 

  • Fric Z, Konvicka M (2007) Dispersal kernels of butterflies: power-law functions are invariant to marking frequency. Basic Appl Ecol 8(4):377–386.

    Article  Google Scholar 

  • Grill A, Cerny A, Fiedler K (2013) Hot summers, long life: egg laying strategies of Maniola butterflies are affected by geographic provenance rather than adult diet. Contrib Zool 82(1):27–36

    Google Scholar 

  • Grimm A, Prieto Ramírez AM, Moulherat S, Reynaud J, Henle K (2014) Life-history trait database of European reptile species. Nat Conserv 9:45–67.

    Article  Google Scholar 

  • Haeler E, Fiedler K, Grill A (2014) What prolongs a butterfly’s life?: Trade-offs between dormancy, fecundity and body size. PLoS ONE 9(11):e111955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS ONE 12(10):e0185809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JK, Thomas CD, Lewis OT (1996) Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. J Anim Ecol 65(6):725–735.

    Article  Google Scholar 

  • Holderegger R, Di Giulio M (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11(6):522–531.

    Article  Google Scholar 

  • Jahner JP, Gibson D, Weitzman CL, Blomberg EJ, Sedinger JS, Parchman TL (2016) Fine-scale genetic structure among greater sage-grouse leks in central Nevada. BMC Evol Biol 16:127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaya Özdemirel B, Turak AS, Bilgin CC (2016) Impact of large scale dam construction on movement corridors of mammals in Artvin, north-eastern Turkey. Appl Ecol Environ Res 14(3):489–507.

    Article  Google Scholar 

  • Latch EK, Boarman WI, Walde A, Fleischer RC (2011) Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises. PLoS ONE 6(11):e27794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurance WF, Clements GR, Sloan S, O’Connell CS, Mueller ND, Goosem M, Venter O, Edwards DP, Phalan B, Balmford A, Van Der Ree R, Arrea IB (2014) A global strategy for road building. Nature 513:229–232.

    Article  CAS  PubMed  Google Scholar 

  • Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62(1):67–118

    Article  Google Scholar 

  • Li Z, Ge C, Li J, Li Y, Xu A, Zhou K, Xue D (2010) Ground-dwelling birds near the Qinghai-Tibet highway and railway. Transp Res Part D 15(8):525–528.

    Article  Google Scholar 

  • Lörtscher M, Erhardt A, Zettel J (1997) Local movement patterns of three common grassland butterflies in a traditionally managed landscape. Mitt Schweiz Entomol Gesellschaft 70:43–55

    Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28(10):614–621.

    Article  PubMed  Google Scholar 

  • McCauley DE (1991) Genetic consequences of local population extinction and recolonization. Trends Ecol Evol 6(1):5–8

    Article  CAS  PubMed  Google Scholar 

  • Morelli F, Beim M, Jerzak L, Jones D, Tryjanowski P (2014) Can roads, railways and related structures have positive effects on birds?—A review. Transp Res Part D 30:21–31.

    Article  Google Scholar 

  • Munguira ML, Thomas JA (1992) Use of road verges by butterfly and burnet populations, and the effect of roads on adult dispersal and mortality. J Appl Ecol 29(2):316–329

    Article  Google Scholar 

  • Ouin A, Martin M, Burel F (2008) Agricultural landscape connectivity for the meadow brown butterfly (Maniola jurtina). Agric Ecosyst Environ 124:193–199.

    Article  Google Scholar 

  • Palomares F, Miguel D, Revilla E, Calzada J, Fedriani JM (2001) Spatial ecology of Iberian Lynx and abundance of European rabbits in Southwestern Spain. Wildl Monogr 148(1):1–36

    Google Scholar 

  • Penone C, Machon N, Julliard R, Le Viol I (2012) Do railway edges provide functional connectivity for plant communities in an urban context? Biol Conserv 148(1):126–133.

    Article  Google Scholar 

  • Pépino M, Rodríguez MA, Magnan P (2012) Fish dispersal in fragmented landscapes: a modeling framework for quantifying the permeability of structural barriers. Ecol Appl 22(5):1435–1445.

    Article  PubMed  Google Scholar 

  • Pépino M, Rodriguez MA, Magnan P, Heino J (2016) Assessing the detectability of road crossing effects in streams: mark-recapture sampling designs under complex fish movement behaviours. J Appl Ecol 53(6):1831–1841.

    Article  Google Scholar 

  • Polic D, Fiedler K, Nell C, Grill A (2014) Mobility of ringlet butterflies in high-elevation alpine grassland: effects of habitat barriers, resources and age. J Insect Conserv 18:1153–1161.

    Article  Google Scholar 

  • Pollock KH (1982) A capture-recapture design robust to unequal probability of capture. J Wildl Manag 46(3):752–757

    Article  Google Scholar 

  • Pruett CL, Patten MA, Wolfe DH (2009) Avoidance behavior by prairie grouse: implications for development of wind energy. Conserv Biol 23(5):1253–1259.

    Article  PubMed  Google Scholar 

  • Prunier JG, Kaufmann B, Léna JP, Fenet S, Pompanon F, Joly P (2014) A 40-year-old divided highway does not prevent gene flow in the alpine newt Ichthyosaura alpestris. Conserv Genet 15(2):453–468.

    Article  Google Scholar 

  • R Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rodríguez MA (2010) A modeling framework for assessing long-distance dispersal and loss of connectivity in stream fish. Am Fish Soc Symp 73:263–279

    Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Ann Rev Ecol Evol Syst 38:231–253.

    Article  Google Scholar 

  • Schtickzelle N, Turture C, Baguette M (2012) Temporal variation in dispersal kernels in a metapopulation of the bog fritillary butterfly (Boloria eunomia). Dispers Ecol Evol 18:231–239

    Article  Google Scholar 

  • Shepard DB, Kuhns AR, Dreslik MJ, Phillips CA (2008) Roads as barriers to animal movement in fragmented landscapes. Anim Conserv 11(4):288–296.

    Article  Google Scholar 

  • Skarpaas O, Shea K, Bullock JM (2005) Optimizing dispersal study design by Monte Carlo simulation. J Appl Ecol 42(4):731–739.

    Article  Google Scholar 

  • Skórka P, Lenda M, Moroń D, Martyka R, Tryjanowski P, Sutherland WJ (2015) Biodiversity collision blackspots in Poland: separation causality from stochasticity in roadkills of butterflies. Biol Conserv 187:154–163.

    Article  Google Scholar 

  • Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85(3):625–642.

    PubMed  Google Scholar 

  • Thomas JA, Lewington R (1991) The butterflies of Britain & Ireland. Dorling Kindersley, London

    Google Scholar 

  • Trochet A, Moulherat S, Calvez O, Stevens V, Clobert J, Schmeller D (2014) A database of life-history traits of European amphibians. Biodivers Data J 2:e4123.

    Article  Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14(1):18–30

    Article  Google Scholar 

  • Van Buskirk J (2012) Permeability of the landscape matrix between amphibian breeding sites. Ecol Evol 2(12):3160–3167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandevelde JC, Penone C, Julliard R (2012) High-speed railways are not barriers to Pyronia tithonus butterfly movements. J Insect Conserv 16(5):801–803.

    Article  Google Scholar 

  • Whittington J, St. Clair CC, Mercer G (2004) Path tortuosity and the permeability of roads and trails to wolf movement. Ecol Soc 9(1):4

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank E. Languille, A. Dubois, T. Langer, A. Mira, E. Garcia, R. Roudier, A. Bideau, A. Brisaud and J. Cornuau for their help in fieldwork. We thank J-F Arnoldi for constructive advice and comments about the framework. A. Verzeni provided helpful revisions on early versions of the draft. This study was granted by the French Ministry of Ecology, Sustainable Development and Energy (CIL&B-ITTECOP-FRB Program).

Data Accessibility

Butterfly empirical data (motorway.csv and railway.csv) and R-scipts are uploaded as online supporting information. We provided a standalone R function (NEFbarrDetect.R) that estimate the barrier effect of any linear feature based on our method. Supplementary material (Appendix 1 and 2) is uploaded as online supporting information.

Author information

Authors and Affiliations

Authors

Contributions

JR, EC, SM and MB contributed to the conception and design of the study. EC and JR collected the data. EC, JR and JGP performed data analysis. JGP designed the simulation study, ran simulations and analysed simulated data. JR wrote the manuscript. All authors participated in critical revisions of the manuscript.

Corresponding author

Correspondence to Jonathan Remon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(pdf 1718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remon, J., Chevallier, E., Prunier, J.G. et al. Estimating the permeability of linear infrastructures using recapture data. Landscape Ecol 33, 1697–1710 (2018). https://doi.org/10.1007/s10980-018-0694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-018-0694-0

Keywords

Navigation