Skip to main content

Advertisement

Log in

Synthetic Aperture Radar (SAR) images improve habitat suitability models

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The ability to detect ecological networks in landscapes is of utmost importance for managing biodiversity and planning corridors.

Objectives

The objective of this study was to evaluate the information provided by a synthetic aperture radar (SAR) image for landscape connectivity modeling compared to aerial photographs (APs).

Methods

We present a novel method that integrates habitat suitability derived from remote sensing imagery into a connectivity model to explain species abundance. More precisely, we compared how two resistance maps constructed using landscape and/or local metrics derived from AP or SAR imagery yield different connectivity values (based on graph theory), considering hedgerow networks and forest carabid beetle species as a model.

Results

We found that resistance maps using landscape and local metrics derived from SAR imagery improve landscape connectivity measures. The SAR model is the most informative, explaining 58% of the variance in forest carabid beetle abundance. This model calculates resistance values associated with homogeneous patches within hedgerows according to their suitability (canopy cover density and landscape grain) for the model species.

Conclusions

Our approach combines two important methods in landscape ecology: the construction of resistance maps and the use of buffers around sampling points to determine the importance of landscape factors. This study was carried out through an interdisciplinary approach involving remote sensing scientists and landscape ecologists. This study is a step forward in developing landscape metrics from satellites to monitor biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photograph source Air Papillon (http://contact@airpapillon.com)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Aksoy S, Akcay G, Cinbis G, Wassenaar T (2008) Automatic mapping of linear woody vegetation features in agricultural landscapes. In: IGARSS 2008—2008 IEEE international geoscience and remote sensing symposium, p IV-403–IV-406

  • Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agric Ecosyst Environ 108:205–217

    Article  Google Scholar 

  • Baghdadi N, Bernier M, Gauthier R, Neeson I (2001) Evaluation of C-band SAR data for wetlands mapping. Int J Remote Sens 22:71–88

    Article  Google Scholar 

  • Baghdadi N, Boyer N, Todoroff P, El Hajj M, Bégué A (2009) Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island. Remote Sens Environ 113:1724–1738

    Article  Google Scholar 

  • Bargiel D (2013) Capabilities of high resolution satellite radar for the detection of semi-natural habitat structures and grasslands in agricultural landscapes. Ecol Inform 13:9–16

    Article  Google Scholar 

  • Baudry J, Burel F, Thenail C, Le Cœur D (2000) A holistic landscape ecological study of the interactions between farming activities and ecological patterns in Brittany, France. Landsc Urban Plan 50:119–128

    Article  Google Scholar 

  • Baudry J, Jouin A (2003) De la haie aux bocages. Organisation, dynamique et gestion (Editions Quae)

  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogramm Remote Sens 58:239–258

    Article  Google Scholar 

  • Betbeder J, Fieuzal R, Baup F (2016) Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield. IEEE J Sel Top Appl Earth Obs Remote Sens. doi:10.1109/JSTARS.2016.2541169

    Google Scholar 

  • Betbeder J, Gond V, Frappart F, Baghdadi NN, Briant G, Bartholomé E (2014a) Mapping of Central Africa forested wetlands using remote sensing. IEEE J Sel Top Appl Earth Obs Remote Sens 7:531–542

    Article  Google Scholar 

  • Betbeder J, Hubert-Moy L, Burel F, Corgne S, Baudry J (2015) Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar. Ecol Indic 52:545–557

    Article  Google Scholar 

  • Betbeder J, Nabucet J, Pottier E, Baudry J, Corgne S, Hubert-Moy L (2014b) Detection and characterization of hedgerows using TerraSAR-X imagery. Remote Sens 6:3752–3769

    Article  Google Scholar 

  • Blaschke T, Strobl J (2001) What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. GeoBIT/GIS 6:12–17

    Google Scholar 

  • Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Chapman and Hall/CRC, New York

    Google Scholar 

  • Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21:877–889

    Article  Google Scholar 

  • Buckreuss S, Werninghaus R, Pitz W (2009) The German satellite mission TerraSAR-X. IEEE Aerosp Electron Syst Mag 24:4–9

    Article  Google Scholar 

  • Burel F (1989) Landscape structure effects on carabid beetles spatial patterns in western France. Landscape Ecol 2:215–226

    Article  Google Scholar 

  • Burel F, Baudry J, Butet A, Clergeau P, Delettre Y, Le Coeur D, Dubs F, Morvan N, Paillat G, Petit S, Thenail C, Brunel E, Lefeuvre JC (1998) Comparative biodiversity along a gradient of agricultural landscapes. Acta Oecol 19:47–60

    Article  Google Scholar 

  • Burel F, Butet A, Delettre YR, Millàn de la Peña N (2004) Differential response of selected taxa to landscape context and agricultural intensification. Landsc Urban Plan 67:195–204

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach, Second edn. Springer, New York, USA

  • Burnham KP, Anderson DR (2004) Multimodel inference, understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2010) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Charrier S, Petit S, Burel F (1997) Movements of Abax parallelepipedus (Coleoptera, Carabidae) in woody habitats of a hedgerow network landscape: a radio-tracing study. Agric Ecosyst Environ 61:133–144

    Article  Google Scholar 

  • Coulon A, Aben J, Palmer SCF, Stevens VM, Callens T, Strubbe D, Lens L, Matthysen E, Baguette M, Travis JMJ (2015) A stochastic movement simulator improves estimates of landscape connectivity. Ecology 96:2203–2213

    Article  CAS  PubMed  Google Scholar 

  • Definiens (2004) eCognition professional: user guide 4. Definiens Imaging Gmbh, Munich

    Google Scholar 

  • Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44:714–724

    Article  Google Scholar 

  • Esmenjand M, Esteoule J, Guyader J (1976) Étude pédologique des différents types de talus: considérations sur la différenciation des profils; essai de systématique. Les bocages: histoire, écologie, économie. Inra ENSA Univ. Rennes, Rennes, p 167–175

  • Foltête J-C, Clauzel C, Vuidel G (2012) A software tool dedicated to the modelling of landscape networks. Environ Model Softw 38:316–327

    Article  Google Scholar 

  • Forman RTT, Baudry J (1984) Hedgerows and hedgerow networks in landscape ecology. Environ Manag 8:495–510

    Article  Google Scholar 

  • Fox GA, Negrete-Yankelevich S, Sosa VJ (2015) Ecological statistics: contemporary theory and application. Oxford University Press, Oxford

    Book  Google Scholar 

  • Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biol Conserv 144:44–55

    Article  Google Scholar 

  • Gastón A, Blázquez-Cabrera S, Garrote G, Mateo-Sánchez MC, Beier P, Simón MA, Saura S (2016) Response to agriculture by a woodland species depends on cover type and behavioural state: insights from resident and dispersing Iberian lynx. J Appl Ecol 53(3):814–824

    Article  Google Scholar 

  • Gil-Tena A, Nabucet J, Mony C, Abadie J, Saura S, Butet A, Burel F, Ernoult A (2014) Woodland bird response to landscape connectivity in an agriculture-dominated landscape: a functional community approach. Community Ecol 15:256–268

    Article  Google Scholar 

  • Hagerty BE, Nussear KE, Esque TC, Tracy CR (2010) Making molehills out of mountains: landscape genetics of the Mojave Desert tortoise. Landscape Ecol 26:267–280

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction. Springer series in statistics, 2nd edn. Springer, New York

    Book  Google Scholar 

  • He KS, Bradley BA, Cord AF, Rocchini D, Tuanmu M-N, Schmidtlein S, Turner W, Wegmann M, Pettorelli N (2015) Will remote sensing shape the next generation of species distribution models? Remote Sens Ecol Conserv 1:4–18

    Article  Google Scholar 

  • Heinzel J, Koch B (2011) Exploring full-waveform LiDAR parameters for tree species classification. Int J Appl Earth Obs Geoinf 13:152–160

    Article  Google Scholar 

  • Imhoff ML, Sisk TD, Milne A, Morgan G, Orr T (1997) Remotely sensed indicators of habitat heterogeneity: use of synthetic aperture radar in mapping vegetation structure and bird habitat. Remote Sens Environ 60:217–227

    Article  Google Scholar 

  • Jongman RHG, Külvik M, Kristiansen I (2004) European ecological networks and greenways. Landsc Urban Plan 68:305–319

    Article  Google Scholar 

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18:299–305

    Article  Google Scholar 

  • Kim Y, Jackson T, Bindlish R, Lee H, Hong S (2012) Radar vegetation index for estimating the vegetation water content of rice and soybean. IEEE Geosci Remote Sens Lett 9:564–568

    Article  Google Scholar 

  • Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74:187–228

    Article  Google Scholar 

  • Le Coeur D, Baudry J, Burel F (1997) Field margins plant assemblages: variation partitioning between local and landscape factors. Landsc Urban Plan 37:57–71

    Article  Google Scholar 

  • Lee J-S (1981) Speckle analysis and smoothing of synthetic aperture radar images. Comput Graph Image Process 17:24–32

    Article  Google Scholar 

  • Lee J-S, Pottier E (2009) Polarimetric radar imaging: from basics to applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Legendre P, Legendre LFJ (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Levanoni O, Levin N, Pe’er G, Turbé A, Kark S (2011) Can we predict butterfly diversity along an elevation gradient from space? Ecography 34:372–383

    Article  Google Scholar 

  • Loreau M, Nolf C-L (1993) Occupation of space by the carabid beetle Abax ater. Acta Oecol 14:247–258

    Google Scholar 

  • Martín-Queller E, Saura S (2013) Landscape species pools and connectivity patterns influence tree species richness in both managed and unmanaged stands. For Ecol Manag 289:123–132

    Article  Google Scholar 

  • Müller J, Brandl R (2009) Assessing biodiversity by remote sensing in mountainous terrain: the potential of LiDAR to predict forest beetle assemblages. J Appl Ecol 46:897–905

    Article  Google Scholar 

  • O’Brien D, Manseau M, Fall A, Fortin M-J (2006) Testing the importance of spatial configuration of winter habitat for woodland caribou: an application of graph theory. Biol Conserv 130:70–83

    Article  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the prioritization of habitat patches and corridors for conservation. Landscape Ecol 21:959–967

    Article  Google Scholar 

  • Petit S, Burel F (1998) Effects of landscape dynamics on the metapopulation of a ground beetle (Coleoptera, Carabidae) in a hedgerow network. Agric Ecosyst Environ 69:243–252

    Article  Google Scholar 

  • Pettorelli N, Laurance WF, O’Brien TG, Wegmann M, Nagendra H, Turner W (2014) Satellite remote sensing for applied ecologists: opportunities and challenges. J Appl Ecol 51:839–848

    Article  Google Scholar 

  • Pfeifer M, Disney M, Quaife T, Marchant R (2012) Terrestrial ecosystems from space: a review of earth observation products for macroecology applications. Glob Ecol Biogeogr 21:603–624

    Article  Google Scholar 

  • Pottier E, Ferro-Famil L (2012) PolSARPro V5.0: an ESA educational toolbox used for self-education in the field of POLSAR and POL-INSAR data analysis. In: 2012 IEEE international geoscience and remote sensing symposium (IGARSS), p 7377–7380

  • Pu R (2009) Broadleaf species recognition with in situ hyperspectral data. Int J Remote Sens 30:2759–2779

    Article  Google Scholar 

  • Pullinger MG, Johnson CJ (2010) Maintaining or restoring connectivity of modified landscapes: evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecol 25:1547–1560

    Article  Google Scholar 

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12:487–506

    Article  Google Scholar 

  • Rayfield B, Pelletier D, Dumitru M, Cardille JA, Gonzalez A (2016) Multipurpose habitat networks for short-range and long-range connectivity: a new method combining graph and circuit connectivity. Methods Ecol Evol 7:222–231

    Article  Google Scholar 

  • Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103

    Article  Google Scholar 

  • Saura S, Torné J (2009) Conefor Sensinode 2.2: a software package for quantifying the importance of habitat patches for landscape connectivity. Environ Model Softw 24:135–139

    Article  Google Scholar 

  • Schooley RL, Branch LC (2011) Habitat quality of source patches and connectivity in fragmented landscapes. Biodivers Conserv 20:1611–1623

    Article  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Thiele HU (1977). Carabid beetles in their environments. A study on habitat selection by adaptation in physiology and behaviour. Springer, Berlin

  • Tischendorf L, Wissel C (1997) Corridors as conduits for small animals: attainable distances depending on movement pattern, boundary reaction and corridor width. Oikos 79:603–611

    Article  Google Scholar 

  • Tournant P, Afonso E, Roué S, Giraudoux P, Foltête J-C (2013) Evaluating the effect of habitat connectivity on the distribution of lesser horseshoe bat maternity roosts using landscape graphs. Biol Conserv 164:39–49

    Article  Google Scholar 

  • Vannier C, Vasseur C, Hubert-Moy L, Baudry J (2011) Multiscale ecological assessment of remote sensing images. Landscape Ecol 26:1053–1069

    Article  Google Scholar 

  • Wade A, McKelvey KS, Schwartz M (2015) Resistance-surface-based wildlife conservation connectivity modeling: summary of efforts in the United States and guide for practitioners. Gen. Tech. Rep. RMRS-GTR-333. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins

  • Wang IJ, Savage WK, Bradley Shaffer H (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374

    Article  PubMed  Google Scholar 

  • Wiens JA, Milne BT (1989) Scaling of “landscapes” in landscape ecology, or, landscape ecology from a beetle’s perspective. Landscape Ecol 3:87–96

    Article  Google Scholar 

  • Wiseman G, McNairn H, Homayouni S, Shang J (2014) RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring. IEEE J Sel Top Appl Earth Obs Remote Sens 7:4461–4471

    Article  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DIVA 3 Program of the French Ministry of Environment AGRICONNECT Project, the CNES, the DLR by providing TerraSAR-X Imagery, and the Zone Atelier Armorique. We thank Jean-Luc Roger and Quentin Landais for field assistance, Santiago Saura for his help on connectivity modeling, and Eric Pottier for his helpful comments on SAR processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Betbeder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betbeder, J., Laslier, M., Hubert-Moy, L. et al. Synthetic Aperture Radar (SAR) images improve habitat suitability models. Landscape Ecol 32, 1867–1879 (2017). https://doi.org/10.1007/s10980-017-0546-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0546-3

Keywords

Navigation