Skip to main content

Advertisement

Log in

The plant functional traits that explain species occurrence across fragmented grasslands differ according to patch management, isolation, and wetness

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Landscape fragmentation significantly affects species distributions by decreasing the number and connectivity of suitable patches. While researchers have hypothesized that species functional traits could help in predicting species distribution in a landscape, predictions should depend on the type of patches available and on the ability of species to disperse and grow there.

Objectives

To explore whether different traits can explain the frequency of grassland species (number of occupied patches) and/or their occupancy (ratio of occupied to suitable patches) across a variety of patch types within a fragmented landscape.

Methods

We sampled species distributions over 1300 grassland patches in a fragmented landscape of 385 km2 in the Czech Republic. Relationships between functional traits and species frequency and occupancy were tested across all patches in the landscape, as well as within patches that shared similar management, wetness, and isolation.

Results

Although some traits predicting species frequency also predicted occupancy, others were markedly different, with competition- and dispersal-related traits becoming more important for occupancy. Which traits were important differed for frequency and occupancy and also differed depending on patch management, wetness, and isolation.

Conclusions

Plant traits can provide insight into plant distribution in fragmented landscapes and can reveal specific abiotic, biotic, and dispersal processes affecting species occurrence in a patch type. However, the importance of individual traits depends on the type of suitable patches available within the landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beals EW (1984) Bray–Curtis Ordination—an effective strategy for analysis of multivariate ecological data. Adv Ecol Res 14:1–55

    Article  Google Scholar 

  • Bossuyt B, Honnay O (2006) Interactions between plant life span, seed dispersal capacity and fecundity determine metapopulation viability in a dynamic landscape. Landscape Ecol 21(8):1195–1205

    Article  Google Scholar 

  • Cadotte MW, Mehrkens LR, Menge DNL (2012) Gauging the impact of meta-analysis on ecology. Evol Ecol 26:1153–1167

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2010) A link between plant traits and abundance: evidence from woody plants in coastal California. J Ecol 98:814–821

    Article  Google Scholar 

  • de Bello F, Berg MP, Dias ATC, Diniz-Filho JAF, Götzenberger L, Hortal J, Ladle RJ, Lepš J (2015) On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot 50(4):349–357

    Article  Google Scholar 

  • de Bello F, Fibich P, Zelený D, Kopecký M, Mudrák O, Chytrý M, Pyšek P, Wild J, Michalcová D, Sádlo J, Šmilauer P, Lepš J, Pärtel M (2016) Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecol Evol 6(12):4088–4101

    Article  PubMed  PubMed Central  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TF, Morales-Castilla I, Olalla-Tarraga MA, Rodriguez MA, Hawkins BA (2012) On the selection of phylogenetic eigenvectors for ecological analyses. Ecography 35:239–249

    Article  Google Scholar 

  • Durka W, Michalski SG (2012) Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93:2297

    Article  Google Scholar 

  • ESRI (2011) ArcGIS Desktop, Release 10. Documentation manual. Environmental Systems Research Institute, Redlands

  • Ewald J (2002) A probabilistic approach to estimating species pools from large compositional matrices. J Veg Sci 13:191–198

    Article  Google Scholar 

  • Hanski I (1994) Patch-occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9(4):131–135

    Article  CAS  PubMed  Google Scholar 

  • Helsen K, Hermy M, Honnay O (2013) Spatial isolation slows down directional plant functional group assembly in restored semi-natural grasslands. J Appl Ecol 50:404–413

    Article  Google Scholar 

  • Hemrová L, Münzbergová Z (2012) Identification of suitable unoccupied habitats: direct versus an indirect approach. Preslia 84:925–937

    Google Scholar 

  • Herben T, Suda J, Klimešová J, Mihulka S, Riha P, Simova I (2012) Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species. Ann Bot 110:1357–1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacquemyn H, Butaye J, Hermy M (2003) Influence of environmental and spatial variables on regional distribution of forest plant species in a fragmented and changing landscape. Ecography 26:768–776

    Article  Google Scholar 

  • Janeček Š, de Bello F, Horník J, Bartoš M, Černý T, Doležal J, Dvorský M, Fajmon K, Janečková P, Jiráská Š, Mudrák O, Klimešová J (2013) Effects of land-use changes on plant functional and taxonomic diversity along a productivity gradient in wet meadows. J Veg Sci 24(5):898–909

    Article  Google Scholar 

  • Johansson VA, Cousins SAO, Eriksson O (2011) Remnant populations and plant functional traits in abandoned semi-natural grasslands. Folia Geobotanica 46:165–179

    Article  Google Scholar 

  • Jongejans E, Telenius A (2001) Field experiments on seed dispersal by wind in ten umbelliferous species (Apiaceae). Plant Ecol 152:67–78

    Article  Google Scholar 

  • Kleyer M et al (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Kleyer M, Dray S, Bello F, Lepš J, Pakeman RJ, Strauss B, Thuiller W, Lavorel S (2012) Assessing species and community functional responses to environmental gradients: which multivariate methods? J Veg Sci 23:805–821

    Article  Google Scholar 

  • Klimeš L, Klimešová J, Hendriks R, van Groenendael J (1997) Clonal plant architecture: Comparative analysis of form and function. In: van Groenendael HKJ (ed) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 1–29

    Google Scholar 

  • Klimešová J, de Bello F (2009) CLO-PLA: the database of clonal and bud bank traits of Central European flora. J Veg Sci 20:511–516

    Article  Google Scholar 

  • Klimešová J, Latzel V, de Bello F, van Groenendael J (2008) Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia 80:245–253

    Google Scholar 

  • Klimešová J, Janeček Š, Horník J, Doležal J (2011) Effect of the method of assessing and weighting abundance on the interpretation of the relationship between plant clonal traits and meadow management. Preslia 83:437–453

    Google Scholar 

  • Klotz S, Kühn I, Durka W (eds) (2002) BIOLFLOR—Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn

  • Koyanagi T, Kusumoto Y, Yamamoto S, Okubo S, Iwasaki N, Takeuchi K (2012) Grassland plant functional groups exhibit distinct time-lags in response to historical landscape change. Plant Ecol 213:327–338

    Article  Google Scholar 

  • Leishman MR, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. In: Fenner M (ed) Seeds—the ecology of regeneration in plant communities, vol 2. CAB International, Wallingford, pp 31–57

    Chapter  Google Scholar 

  • Lewis RJ, de Bello F, Bennett JA, Fibich P, Finerty GE, Götzenberger L, Hiiesalu I, Kasari L, Lepš J, Májeková M, Mudrák O, Riibak K, Ronk A, Rychetská T, Vítová A, Pärtel M (2016) Applying the dark diversity concept to nature conservation. Conserv Biol 31:1–8

    Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Maurer K, Durka W, Stocklin J (2003) Frequency of plant species in remnants of calcareous grassland and their dispersal and persistence characteristics. Basic Appl Ecol 4:307–316

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software programme produced by authors. University of Massachusetts, Amherst

  • McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes—their relationship to disturbance responses in herbaceous vegetation. J Ecol 83:31–44

    Article  Google Scholar 

  • Michalcová D, Chytrý M, Pechanec V, Hájek O, Jongepier JW, Danihelka J, Grulich V, Šumberová K, Preislerová Z, Ghisla A, Bacaro G, Zelený D (2013) Diversity of grasslands in a landscape context: a comparison of contrasting regions in Central Europe. Folia Geobot 49:117–135

    Article  Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation analysis. Wiley, New York

    Google Scholar 

  • Münzbergová Z, Herben T (2004) Identification of suitable unoccupied habitats in metapopulation studies using co-occurrence of species. Oikos 105:408–414

    Article  Google Scholar 

  • Ozinga WA, Hennekens SM, Schaminee JHJ, Bekker RM, Prinzing A, Bonn S, Poschlod P, Tackenberg O, Thompson K, Bakker JP, van Groenendael JM (2005a) Assessing the relative importance of dispersal in plant communities using an ecoinformatics approach. Folia Geobot 40:53–67

    Article  Google Scholar 

  • Ozinga WA, Schaminee JHJ, Bekker RM, Bonn S, Poschlod P, Tackenberg O, Bakker J, van Groenendael JM (2005b) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:555–561

    Article  Google Scholar 

  • Pärtel M, Szava-Kovats R, Zobel M (2011) Dark diversity: shedding light on absent species. Trends Ecol Evol 26:124–128

    Article  PubMed  Google Scholar 

  • Poorter H, De Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol 143:163–176

    Article  CAS  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

  • Riibak K, Reitalu T, Tamme R, Helm A, Gerhold P, Znamenskiy S, Bengtsson K, Rosén E, Prentice HC, Pärtel M (2014) Dark diversity in dry calcareous grasslands is determined by dispersal ability and stress-tolerance. Ecography. doi:10.1111/ecog.01312

    Google Scholar 

  • Šmilauer P, Lepš J (2014) Multivariate analysis of ecological data using canoco 5. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Soons MB, Ozinga WA (2005) How important is long-distance seed dispersal for the regional survival of plant species? Divers Distrib 11:165–172

    Article  Google Scholar 

  • Soons MB, Heil GW, Nathan R, Katul GG (2004a) Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85:3056–3068

    Article  Google Scholar 

  • Soons MB, Nathan R, Katul GG (2004b) Human effects on long-distance wind dispersal and colonization by grassland plants. Ecology 85:3069–3079

    Article  Google Scholar 

  • Tamme R, Götzenberger L, Zobel M, Bullock JM, Hooftman DAP, Kaasik A, Pärtel M (2014) Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95:505–513

    Article  PubMed  Google Scholar 

  • Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Westoby M, Leishman M, Lord J (1996) Comparative ecology of seed size and dispersal. Philos Trans R Soc Lond Ser B 351:1309–1317

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by GAČR grant no. P505/12/1296 and GA16-12243S. We thank Karel Fajmon, Záboj Hrázský, Šárka Jiráská, and Josef Vozanka for field sampling, David Zelený for valuable comments on Beals smoothing calculations and Bruce Jaffee for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Janečková.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janečková, P., Janeček, Š., Klimešová, J. et al. The plant functional traits that explain species occurrence across fragmented grasslands differ according to patch management, isolation, and wetness. Landscape Ecol 32, 791–805 (2017). https://doi.org/10.1007/s10980-017-0486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0486-y

Keywords

Navigation