Skip to main content
Log in

A study of the mechanisms of excitation–contraction coupling in frog skeletal muscle based on measurements of [Ca2+] transients inside the sarcoplasmic reticulum

  • Original Article
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

[Ca2+] transients inside the sarcoplasmic reticulum (SR) were recorded in frog skeletal muscle twitch fibers under voltage clamp using the low affinity indicator Mag Fluo 4 (loaded in its AM form) with the purpose of studying the effect on Ca2+ release of extrinsic Ca2+ buffers (i.e. BAPTA) added at high concentration to the myoplasm. When the extrinsic Ca2+ buffer is added to the myoplasm, part of the released Ca2+ binds to it, reducing the Ca2+ signal reported by a myoplasmic indicator. This, in turn, hinders the quantification of the amount of Ca2+ released. Monitoring release by measuring [Ca2+] inside the SR avoids this problem. The application of extrinsic buffers at high concentration reduced the resting [Ca2+] in the SR ([Ca2+]SR) continuously from a starting value close to 400 μM reaching the range of 100 μM in about half an hour. The effect of reducing resting [Ca2+]SR on the Ca2+ permeability of the SR activated by voltage clamp depolarization to 0 mV was studied in cells where the myoplasmic [Ca2+] ([Ca2+]myo) transients were simultaneously recorded with Rhod2. The Ca2+ release flux was calculated from [Ca2+]myo and divided by [Ca2+]SR to obtain the permeability. Peak permeability was significantly reduced, from 0.026 ± 0.005 ms−1 at resting [Ca2+]SR = 372 ± 5 μM to 0.021 ± 0.004 ms−1 at resting [Ca2+]SR = 120 ± 16 μM (n = 4, p = 0.03). The time averaged permeability was not significantly changed (0.009 ± 0.003 and 0.010 ± 0.003 ms−1, at the higher and lower [Ca2+]SR respectively). Once the cells were equilibrated with the high buffer intracellular solution, the change in [Ca2+]SR (Δ[Ca2+]SR) in response to voltage clamp depolarization (0 mV, 200 ms) in 20 mM BAPTA was significantly lower (Δ[Ca2+]SR = 30.2 ± 3.5 μM from resting [Ca2+]SR = 88.8 ± 13.6 μM, n = 5) than in 40 mM EGTA (Δ[Ca2+]SR = 72.2 ± 10.4 μM from resting [Ca2+]SR = 98.2 ± 15.6 μM, n = 4) suggesting that a Ca2+ activated component of release was suppressed by BAPTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beard NA, Laver DR, Dulhunty AF (2004) Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85(1):33–69

    Article  CAS  PubMed  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidences for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    Article  CAS  PubMed  Google Scholar 

  • Brum G, Ríos E, Stefani E (1988a) Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres. J Physiol 398:441–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brum G, Fitts R, Pizarro G, Ríos E (1988b) Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling. J Physiol 398:475–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canato M, Scorzeto M, Giacomello M, Protasi F, Reggiani C, Stienen GJ (2010) Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe. Proc Natl Acad Sci USA 107:22326–22331

    Article  Google Scholar 

  • Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88(4):1491–1545

    Article  CAS  PubMed  Google Scholar 

  • Csernoch L, Jacquemond V, Schneider MF (1993) Microinjection of strong calcium buffers suppresses the peak of calcium release during depolarization in frog skeletal muscle fibers. J Gen Physiol 101(2):297–333

    Article  CAS  PubMed  Google Scholar 

  • Cukierman S, Yellen G, Miller C (1985) The K+ channel of sarcoplasmic reticulum. A new look at Cs + block. Biophys J 48(3):477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Armas R, González S, Brum G, Pizarro G (1998) Effects of 2,3-butanedione monoxime on excitation-contraction coupling in frog twitch fibres. J Mus Res Cell Motil 19:961–977

    Article  Google Scholar 

  • Donoso P, Prieto H, Hidalgo C (1995) Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle. Biophys J 68:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 89(4):1153–1176

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Tanaka M, Ogawa Y (1970) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228:34–36

    Article  CAS  PubMed  Google Scholar 

  • Felder E, Franzini-Armstrong C (2002) Type 3 ryanodine receptors of skeletal muscle are segregated in a parajunctional position. Proc Natl Acad Sci USA 99(3):1695–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fénelon K, Pape PC (2002) Recruitment of Ca2+ release channels by calcium-induced Ca2+ release does not appear to occur in isolated Ca2+ release sites. J Physiol 544(3):777–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fénelon K, Lamboley CR, Carrier N, Pape PC (2012) Calcium buffering properties of sarcoplasmic reticulum and calcium-induced Ca2+ release during the quasi-steady level of release in twitch fibers from frog skeletal muscle. J Gen Physiol 140(4):403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fill M, Copello J (2002)). Ryanodine receptors calcium channels. Physiol Rev 82:893–922

    Article  CAS  PubMed  Google Scholar 

  • Gillespie D, Fill M (2008) Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. Biophys J 95(8):3706–3714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González A, Ríos E (1993) Perchlorate enhances transmission in skeletal muscle excitation contraction coupling. J Gen Physiol 102:373 421

    Article  PubMed  Google Scholar 

  • Györke S, Györke I, Lukyanenko V, Terentyev D, Viatchenko-Karpinski S, Wiesner TF (2002) Regulation of sarcoplasmic reticulum calcium release by luminal calcium in cardiac muscle. Front Biosci 1(7):1454–1463

    Article  Google Scholar 

  • Harafuji H, Ogawa Y (1980) Re-examination of the apparent binding constant of ethylene glycol bis(beta-aminoethyl ether)-N,N,N′,N′-tetraacetic acid with calcium around neutral pH. J Biochem 87(5):1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Hollingworth S, Gee KR, Baylor SM (2009) Low-affinity Ca indicators compared in measurements of skeletal muscle Ca2+ transients. Biophys J 97(7):1864–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemond V, Csernoch L, Klein MG, Schneider MF (1991) Voltage-gated and calcium-gated calcium release during depolarization of skeletal muscle fibers. Biophys J 60(4):867–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jong DS, Pape PC, Chandler WK, Baylor SM (1993) Reduction of calcium inactivation of sarcoplasmic reticulum calcium release by fura-2 in voltage-clamped cut twitch fibers from frog muscle. J Gen Physiol 102:333–370

    Article  CAS  PubMed  Google Scholar 

  • Jong DS, Pape PC, Baylor SM, Chandler WK (1995) Calcium inactivation of calcium release in frog cut muscle fibers that contain millimolar EGTA or Fura-2. J Gen Physiol 106:337–388

    Article  CAS  PubMed  Google Scholar 

  • Kabbara AA, Allen DG (2001) The use of the indicator fluo-5N to measure sarcoplasmic reticulum calcium in single muscle fibres of the cane toad. J Physiol 534:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiyama T, Murayama T, Suzuki E, Allen PD, Ogawa Y (2010) Frog alpha- and beta-ryanodine receptors provide distinct intracellular Ca2 + signals in a myogenic cell line. PLoS One 12;5(7):e11526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettlun C, González A, Ríos E, Fill M (2003) Unitary Ca2 + current through mammalian cardiac and amphibian skeletal muscle ryanodine receptor channels under near-physiological ionic conditions. J Gen Physiol 122(4):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kits KS, de Vlieger TA, Kooi BW, Mansvelder HD (1999) Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles. Biophys J. 76(3):1693–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs L, Ríos E, Schneider MF (1983) Measurement and modification of free calcium transients in frog skeletal muscle fibres by metallochromic indicator dye. J Physiol 343:161–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labarca PP, Miller C (1981) A K+-selective, three-state channel from fragmented sarcoplasmic reticulum of frog leg muscle. J Membr Biol 61(1):31–38

    Article  CAS  PubMed  Google Scholar 

  • Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Ríos E (2006) Depletion “skraps” and dynamic buffering inside the cellular calcium store. Proc Natl. Acad Sci USA 103:2982–2987

    Article  CAS  Google Scholar 

  • Manno C, Figueroa LC, Gillespie D, Fitts R, Kang C, Franzini-Armstrong C, Rios E (2017) Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle. Proc Natl Acad Sci USA 114(4):E638–E647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer W, Ríos E, Schneider MF (1987) A general procedure for determining calcium release in skeletal muscle fibers. Biophys J 51:849–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murayama T, Kurebayashi N (2011) Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes. Prog Biophys Mol Biol 105(3):134–144

    Article  CAS  PubMed  Google Scholar 

  • Murayama T, Ogawa Y (2001) Selectively suppressed Ca2+-induced Ca2 + release activity of alpha-ryanodine receptor (alpha-RyR) in frog skeletal muscle sarcoplasmic reticulum: potential distinct modes in Ca2 + release between alpha- and beta-RyR. J Biol Chem 26(4):2953–2960

    Article  Google Scholar 

  • Naraghi M, Neher E (1997) Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J Neurosci 17(18):6961–6973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher E (1986) Concentration profiles of intracellular calcium in the presence of a diffusible chelator. In: Heinemann U, Klee M, Neher E, Singer W (eds) Calcium electrogenesis and neuronal functioning. Springer Verlag, Berlin, pp 80–96

    Chapter  Google Scholar 

  • Olivera JF, Pizarro G (2010) A reappraisal of the Ca2+ dependence of fast inactivation of Ca2+ release in frog skeletal muscle. J Muscle Res Cell Motil 31(2):81–92

    Article  CAS  PubMed  Google Scholar 

  • Olivera JF, Pizarro G (2016) Excitation contraction uncoupling by high intracellular [Ca2+] in frog skeletal muscle: a voltage clamp study. J Muscle Res Cell Motil 37(4–5):117–130

    Article  CAS  PubMed  Google Scholar 

  • Pape PC, Carrier N (1998) Effect of sarcoplasmic reticulum (SR) Calciem content on SR Calcium release by small voltage-clamp depolarizations in frog cut skeletal muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol 112:161–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pape PC, Jong DS, Chandler WK (1995) Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol 106:259–336

    Article  CAS  PubMed  Google Scholar 

  • Pape PC, Fénelon K, Carrier N (2002) Extra activation component of calcium release I frog muscle fibers. J Physiol 542(3):867–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pape PC, Fénelon K, Lamboley CR, Stachura D (2007) Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres. J Physiol 581(Pt 1):319–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perni S, Marsden KC, Escobar M, Hollingworth S, Baylor SM, Franzini-Armstrong C (2015) Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle. J Gen Physiol 145(3):173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizarro G, Ríos E (2004) How source content determines intracellular Ca2+ release kinetics. Simultaneous measurement of [Ca2+] transients and [H+] displacement in skeletal muscle. J Gen Physiol 124:239–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pouvreau S, Royer L, Yi J, Brum G, Meissner G, Ríos E, Zhou J (2007) Ca2+ sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci USA 104(12):5235–5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios E, Pizarro G (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev 71:849–908

    Article  CAS  PubMed  Google Scholar 

  • Ríos E (2018) Calcium-induced release of calcium in muscle: 50 years of work and the emerging consensus. J Gen Physiol 150(4):521–537

    PubMed  PubMed Central  Google Scholar 

  • Ríos E, Pizarro G (1988) Voltage sensors and calcium channels of excitation-contraction coupling. NIPS 3:223–227

    Google Scholar 

  • Ríos E, Karhanek M, Ma J, González A (1993) An allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle. J Gen Physiol 102(3):449–481

    Article  PubMed  Google Scholar 

  • Robin G, Berthier C, Allard B (2012) Sarcoplasmic reticulum Ca2+ permeation explored from the lumen side in mdx muscle fibers under voltage control. J Gen Physiol 139:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolf R, Magalhães PJ, Pozzan T (2006) Direct in vivo monitoring of sarcoplasmic reticulum Ca2+ and cytosolic cAMP dynamics in mouse skeletal muscle. J Cell Biol 173:187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider MF, Simon BJ (1988) Inactivation of calcium release from the sarcoplasmic reticulum in frog skeletal muscle. J Physiol 405:727–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirokova N, Ríos E (1997) Small event Ca2+ release: a probable precursor of Ca2+ sparks in skeletal muscle. J Physiol 502(1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirokova N, García J, Pizarro G, Ríos E (1996) Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle. J Gen Physiol 107:1–187

    Article  CAS  PubMed  Google Scholar 

  • Simon BJ, Hill DA (1992) Charge movement and SR calcium release in frog skeletal muscle can be related by a Hodgkin-Huxley model with four gating particles. Biophys J 61(5):1109–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern MD (1992) Buffering of calcium in the vicinity of a channel pore. Cell Calcium 13:183–192

    Article  CAS  PubMed  Google Scholar 

  • Stern M, Pizarro G, Ríos E (1997) Local control model of excitation contraction coupling in skeletal muscle. J Gen Physiol 110:415–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutko J, Airey JA (1996) Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev 76:1027–1071

    Article  CAS  PubMed  Google Scholar 

  • Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Ríos E (2011a) D4cpv-calsequestrin: a sensitive ratiometric biosensor targeted to the calcium store of skeletal muscle. J Gen Physiol 138:211–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen PD, Brum G, Ríos E (2011b) Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca2+ release in skeletal muscle. J Gen Physiol 138:231–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang S, Wong HC, Wang ZM, Huang Y, Zou J, Zhuo Y, Pennati A, Gadda G, Delbono O, Yang JJ (2011) Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proc Natl Acad Sci USA 108:16265–16270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy A, Meissner G (1996) Sarcoplasmic reticulum luminal Ca2+ has access to cytosolic activation and inactivation sites of skeletal muscle Ca2+ release channel. Biophys J 70:2600–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziman AP, Ward CW, Rodney GG, Lederer WJ, Bloch RJ (2010) Quantitative measurement of Ca2+ in the sarcoplasmic reticulum lumen of mammalian skeletal muscle. Biophys J 99:2705–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by PEDECIBA and UdelaR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Pizarro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivera, J.F., Pizarro, G. A study of the mechanisms of excitation–contraction coupling in frog skeletal muscle based on measurements of [Ca2+] transients inside the sarcoplasmic reticulum. J Muscle Res Cell Motil 39, 41–60 (2018). https://doi.org/10.1007/s10974-018-9497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-018-9497-9

Keywords

Navigation