Skip to main content

Advertisement

Log in

Proteomic analysis of physiological versus pathological cardiac remodeling in animal models expressing mutations in myosin essential light chains

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

In this study we aimed to provide an in-depth proteomic analysis of differentially expressed proteins in the hearts of transgenic mouse models of pathological and physiological cardiac hypertrophy using tandem mass tag labeling and liquid chromatography tandem mass spectrometry. The Δ43 mouse model, expressing the 43-amino-acid N-terminally truncated myosin essential light chain (ELC) served as a tool to study the mechanisms of physiological cardiac remodeling, while the pathological hypertrophy was investigated in A57G (Alanine 57 → Glycine) ELC mice. The results showed that 30 proteins were differentially expressed in Δ43 versus A57G hearts as determined by multiple pair comparisons of the mutant versus wild-type (WT) samples with P < 0.05. The A57G hearts showed differential expression of nine mitochondrial proteins involved in metabolic processes compared to four proteins for ∆43 hearts when both mutants were compared to WT hearts. Comparisons between ∆43 and A57G hearts showed an upregulation of three metabolically important mitochondrial proteins but downregulation of nine proteins in ∆43 hearts. The physiological model of cardiac hypertrophy (∆43) showed no changes in the levels of Ca2+-binding proteins relative to WT, while the pathologic model (A57G) showed the upregulation of three Ca2+-binding proteins, including sarcalumenin. Unique differences in chaperone and fatty acid metabolism proteins were also observed in Δ43 versus A57G hearts. The proteomics data support the results from functional studies performed previously on both animal models of cardiac hypertrophy and suggest that the A57G- and not ∆43- mediated alterations in fatty acid metabolism and Ca2+ homeostasis may contribute to pathological cardiac remodeling in A57G hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267:H742–H750

    PubMed  CAS  Google Scholar 

  • Amsellem V et al. (2014) ICAM-2 regulates vascular permeability and N-cadherin localization through ezrin-radixin-moesin (ERM) proteins and Rac-1 signalling. Cell Commun Signal 12:12. doi:10.1186/1478-811X-12-12

  • Barefield D, Kumar M, de Tombe PP, Sadayappan S (2014) Contractile dysfunction in a mouse model expressing a heterozygous MYBPC3 mutation associated with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 306:H807–815. doi:10.1152/ajpheart.00913.2013

  • Barger PM, Kelly DP (1999) Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms. Am J Med Sci 318:36–42

    Article  PubMed  CAS  Google Scholar 

  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227. doi:10.1016/j.pharmthera.2010.04.005

    Article  PubMed  CAS  Google Scholar 

  • Bers DM, Guo T (2005) Calcium signaling in cardiac ventricular myocytes. Ann N Y Acad Sci 1047:86–98. doi:10.1196/annals.1341.008

    Article  PubMed  CAS  Google Scholar 

  • Chang AN et al (2015) Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem. doi:10.1074/jbc.M115.642165

    Google Scholar 

  • Chen CP et al (2015a) In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction. J Physiol 593:681–700. doi:10.1113/jphysiol.2014.283853

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen TH et al (2015b) Neonatal death and heart failure in mouse with transgenic HSP60 expression. Biomed Res Int 2015:539805. doi:10.1155/2015/539805

    PubMed Central  PubMed  Google Scholar 

  • Cho H et al (2014) Expression of stress-induced phosphoprotein1 (STIP1) is associated with tumor progression and poor prognosis in epithelial ovarian cancer. Genes Chromosom Cancer 53:277–288. doi:10.1002/gcc.22136

    Article  PubMed  CAS  Google Scholar 

  • Chung E, Leinwand LA (2014) Pregnancy as a cardiac stress model. Cardiovasc Res 101:561–570. doi:10.1093/cvr/cvu013

    Article  PubMed Central  PubMed  Google Scholar 

  • Cui Z, Dewey S, Gomes AV (2011) Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases. Am J Cardiovasc Dis 1:274–292

  • Cui Z, Scruggs SB, Gilda JE, Ping P, Gomes AV (2014) Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond. J Mol Cell Cardiol 71:32–42. doi:10.1016/j.yjmcc.2013.10.008

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Agudo M, Satrústegui J (2000) Characterization of a second member of the subfamily of calcium-binding mitochondrial carriers expressed in human non-excitable tissues. Biochem J 345:725–732

    Article  PubMed Central  PubMed  Google Scholar 

  • den Boer ME, Dionisi-Vici C, Chakrapani A, van Thuijl AO, Wanders RJ, Wijburg FA (2003) Mitochondrial trifunctional protein deficiency: a severe fatty acid oxidation disorder with cardiac and neurologic involvement. J Pediatr 142:684–689. doi:10.1067/mpd.2003.231

    Article  CAS  Google Scholar 

  • Depre C et al (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821–1828. doi:10.1161/CIRCULATIONAHA.106.637827

    Article  PubMed  CAS  Google Scholar 

  • Dewey S, Lai X, Witzmann FA, Sohal M, Gomes AV (2013) Proteomic analysis of hearts from Akita mice suggests that increases in soluble epoxide hydrolase and antioxidative programming are key changes in early stages of diabetic cardiomyopathy. J Proteome Res 12:3920–3933. doi:10.1021/pr4004739

    Article  PubMed  CAS  Google Scholar 

  • Doenst T et al (2010) Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res 86:461–470. doi:10.1093/cvr/cvp414

    Article  PubMed  CAS  Google Scholar 

  • Facundo HT, Brainard RE, Watson LJ, Ngoh GA, Hamid T, Prabhu SD, Jones SP (2012) O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 302:H2122–H2130. doi:10.1152/ajpheart.00775.2011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fan GC, Gregory KN, Zhao W, Park WJ, Kranias EG (2004) Regulation of myocardial function by histidine-rich, calcium-binding protein. Am J Physiol Heart Circ Physiol 287:H1705–H1711. doi:10.1152/ajpheart.01211.2003

  • Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–193. doi:10.1016/S0065-3233(04)71005-0

    Article  PubMed  CAS  Google Scholar 

  • Gomes AV et al. (2009) Contrasting proteome biology and functional heterogeneity of the 20 S proteasome complexes in mammalian tissues. Mol Cell Proteomics 8:302–315. doi:10.1074/mcp.M800058-MCP200

  • Gomes AV et al (2006) Mapping the murine cardiac 26S proteasome complexes. Circ Res 99:362–371. doi:10.1161/01.RES.0000237386.98506.f7

    Article  PubMed  CAS  Google Scholar 

  • Harvey PA, Leinwand LA (2011) Cellular mechanisms of cardiomyopathy. J Cell Biol 194:355–365. doi:10.1083/jcb.201101100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  • Hernandez OM, Jones M, Guzman G, Szczesna-Cordary D (2007) Myosin essential light chain in health and disease. Am J Physiol Heart Circ Physiol 292:H1643–H1654. doi:10.1152/ajpheart.00931.2006

    Article  PubMed  CAS  Google Scholar 

  • Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283. doi:10.1056/NEJM199910213411706

    Article  PubMed  CAS  Google Scholar 

  • Ibdah JA et al (2001) Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest 107:1403–1409. doi:10.1172/JCI12590

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaski JP et al (2009) Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ Cardiovasc Genet 2:436–441. doi:10.1161/CIRCGENETICS.108.821314

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak K et al. (2013) Discrete effects of A57G-myosin essential light chain mutation associated with familial hypertrophic cardiomyopathy American journal of physiology. Heart Circ Physiol 305:H575–H589

  • Kazmierczak K, Xu Y, Jones M, Guzman G, Hernandez OM, Kerrick WGL, Szczesna-Cordary D (2009) The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction. J Mol Biol 387:706–725. doi:10.1016/j.jmb.2009.02.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kazmierczak K, Yuan C-C, Liang J, Huang W, Rojas AI, Szczesna-Cordary D (2014) Remodeling of the heart in hypertrophy in animal models with myosin essential light chain mutations. Front Physiology 5:353. doi:10.3389/fphys.2014.00353

    Article  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  PubMed  CAS  Google Scholar 

  • Lee W et al (2001) Different expressivity of a ventricular essential myosin light chain gene Ala57Gly mutation in familial hypertrophic cardiomyopathy. Am Heart J 141:184–189

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Sarna SK (2009) Nuclear myosin II regulates the assembly of preinitiation complex for ICAM-1 gene transcription. Gastroenterology 137(1051–1060):e1051–e1053. doi:10.1053/j.gastro.2009.03.040

    Article  CAS  Google Scholar 

  • Li Z, Adams RM, Chourey K, Hurst GB, Hettich RL, Pan C (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11:1582–1590. doi:10.1021/pr200748h

    Article  PubMed  CAS  Google Scholar 

  • Lorell BH, Carabello BA (2000) Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation 102:470–479. doi:10.1161/01.CIR.102.4.470

    Article  PubMed  CAS  Google Scholar 

  • Maejima H, Nagashio R, Yanagita K, Hamada Y, Amoh Y, Sato Y, Katsuoka K (2014) Moesin and stress-induced phosphoprotein-1 are possible sero-diagnostic markers of psoriasis. PLoS One 9:e101773

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maron BJ (2002) The young competitive athlete with cardiovascular abnormalities: causes of sudden death, detection by preparticipation screening, and standards for disqualification. Card Electrophysiol Rev 6:100–103. doi:10.1023/A:1017903709361

  • McMullen JR et al (2007) Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 104:612–617. doi:10.1073/pnas.0606663104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Megger DA et al (2014) Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines. Biochim Biophys Acta 1844:967–976. doi:10.1016/j.bbapap.2013.07.017

    Article  PubMed  CAS  Google Scholar 

  • Miller MS et al (2005) The essential light chain N-terminal extension alters force and fiber kinetics in mouse cardiac muscle. J Biol Chem 280:34427–34434. doi:10.1074/jbc.M508430200

    Article  PubMed  CAS  Google Scholar 

  • Moolman JC, Corfield VA, Posen B, Ngumbela K, Seidman C, Brink PA, Watkins H (1997) Sudden death due to troponin T mutations. J Am Coll Cardiol 29:549–555

    Article  PubMed  CAS  Google Scholar 

  • Morita H et al (2008) Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med 358:1899–1908. doi:10.1056/NEJMoa075463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muthu P et al (2011) Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction. FASEB J 25:4394–4405. doi:10.1096/fj.11-191973

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  PubMed  CAS  Google Scholar 

  • Olson TM, Karst ML, Whitby FG, Driscoll DJ (2002) Myosin light chain mutation causes autosomal recessive cardiomyopathy with mid-cavitary hypertrophy and restrictive physiology. Circulation 105:2337–2340

    Article  PubMed  CAS  Google Scholar 

  • Poetter K et al (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13:63–69

    Article  PubMed  CAS  Google Scholar 

  • Powell SR, Herrmann J, Lerman A, Patterson C, Wang X (2012) The ubiquitin-proteasome system and cardiovascular disease. Prog Mol Biol Trans Sci 109:295–346. doi:10.1016/B978-0-12-397863-9.00009-2

    Article  CAS  Google Scholar 

  • Rauniyar N, Yates JR 3rd (2014) Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 13:5293–5309. doi:10.1021/pr500880b

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rayment I et al. (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58. doi:10.1126/science.8316857

  • Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    Article  PubMed  CAS  Google Scholar 

  • Richard P et al. (2003) Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232, and erratum (2004) 2109(2225):3258

  • Sanzen Y et al (2010) Functional proteomic analysis of experimental autoimmune myocarditis-induced chronic heart failure in the rat. Biol Pharm Bull 33:477–486

    Article  PubMed  CAS  Google Scholar 

  • Sarikas A et al (2005) Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc Res 66:33–44. doi:10.1016/j.cardiores.2005.01.004

    Article  PubMed  CAS  Google Scholar 

  • Shadforth IP, Dunkley TP, Lilley KS, Bessant C (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genom 6:145. doi:10.1186/1471-2164-6-145

    Article  CAS  Google Scholar 

  • Smith SH, Kramer MF, Reis I, Bishop SP, Ingwall JS (1990) Regional changes in creatine kinase and myocyte size in hypertensive and nonhypertensive cardiac hypertrophy. Circ Res 67:1334–1344

    Article  PubMed  CAS  Google Scholar 

  • Spirito P, Bellone P, Harris KM, Bernabo P, Bruzzi P, Maron BJ (2000) Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N Engl J Med 342:1778–1785

    Article  PubMed  CAS  Google Scholar 

  • Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Cardiovasc Res 33:243–257

    Article  PubMed  CAS  Google Scholar 

  • Timson DJ (2003) Fine tuning the myosin motor: the role of the essential light chain in striated muscle myosin. Biochimie 85:639–645

    Article  PubMed  CAS  Google Scholar 

  • Uehara T et al (1998) Myocardial glucose metabolism in patients with hypertrophic cardiomyopathy: assessment by F-18-FDG PET study. Ann Nucl Med 12:95–103

    Article  PubMed  CAS  Google Scholar 

  • van der Velden J, Ho CY, Tardiff JC, Olivotto I, Knollmann BC, Carrier L (2015) Research priorities in sarcomeric cardiomyopathies. Cardiovasc Res 105:449–456. doi:10.1093/cvr/cvv019

    Article  PubMed  Google Scholar 

  • VanBuren P, Waller GS, Harris DE, Trybus KM, Warshaw DM, Lowey S (1994) The essential light chain is required for full force production by skeletal muscle myosin. Proc Natl Acad Sci USA 91:12403–12407

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Watson LJ et al (2010) O-linked beta-N-acetylglucosamine transferase is indispensable in the failing heart. Proc Natl Acad Sci USA 107:17797–17802. doi:10.1073/pnas.1001907107

    Article  PubMed Central  PubMed  Google Scholar 

  • Young ME et al (2007) Proposed regulation of gene expression by glucose in rodent heart. Gene Regul Syst Biol 1:251–262

    Google Scholar 

  • Yuan CC et al (2015) Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proc Natl Acad Sci USA. doi:10.1073/pnas.1505819112

    Google Scholar 

  • Yujiri T, Fanger GR, Garrington TP, Schlesinger TK, Gibson S, Johnson GL (1999) MEK kinase 1 (MEKK1) transduces c-Jun NH2-terminal kinase activation in response to changes in the microtubule cytoskeleton. J Biol Chem 274:12605–12610

    Article  PubMed  CAS  Google Scholar 

  • Zhang YS et al (2015a) Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 110:38. doi:10.1007/s00395-015-0494-5

    Article  PubMed  CAS  Google Scholar 

  • Zhang YS et al (2015b) A novel function of nuclear nonmuscle myosin regulatory light chain in promotion of xanthine oxidase transcription after myocardial ischemia/reperfusion. Free Radic Biol Med 83:115–128. doi:10.1016/j.freeradbiomed.2015.02.013

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. National Institutes of Health (NIH) Grants HL108343 and HL123255 (DSC); HL096819 (AVG), and the American Heart Association Grants 15PRE23020006 (CCY) and 15POST25080302 (ZZ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aldrin V. Gomes or Danuta Szczesna-Cordary.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, A.V., Kazmierczak, K., Cheah, J.X. et al. Proteomic analysis of physiological versus pathological cardiac remodeling in animal models expressing mutations in myosin essential light chains. J Muscle Res Cell Motil 36, 447–461 (2015). https://doi.org/10.1007/s10974-015-9434-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-015-9434-0

Keywords

Navigation