Skip to main content
Log in

Excess enthalpies of [CnMIM][NTf2] n = (2 or 10) + ethanol or + N-methyl-2-pyrrolidone binary mixtures at 298.15 K and 0.1 MPa

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mixtures containing 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [CnMIM][NTf2] n = {2, 10}, + ethanol or + N-methyl-2-pyrrolidone have been investigated to determine excess molar enthalpies, HE, and excess partial molar enthalpies of components, \(H_{1}^{{\text{E}}}\) and \(H_{2}^{{\text{E}}}\), over the entire mole fraction, x1, range, at 298.15 K and 0.10 MPa. Ionic liquids, ILs, were pre-treated by heating and by using activated molecular sieves. Both mixtures in ethanol are endothermic and the \(H_{{\text{i}}}^{{\text{E}}}\) of the components are always positive while those in NMP are exothermic and the corresponding values of \(H_{{\text{i}}}^{{\text{E}}}\) are negative, in the whole x1 range. The deviations from ideality are quite significant, being the HE values at equimolar composition, \(H_{{{\text{eq}}}}^{{\text{E}}} \pm u\); (+ 1800 ± 40 and + 2110 ± 10) J mol−1 for ethanol-containing mixtures and (− 1410 ± 10 and − 1980 ± 20) J mol−1 for NMP-containing mixtures (\(u\) is the standard uncertainty). The values of the excess partial molar enthalpies at infinite dilution of the components, \(H_{\rm i}^{{{\text{E,}}\infty }}\), show regular trends. The \(H_{1}^{{{\text{E,}}\infty }}\) are always greater than the \(H_{2}^{{{\text{E,}}\infty }}\); their ratio is about 1.8 for mixtures in EtOH and 2.5 for NMP-containing mixtures. The greatest thermal effects are found when the molecular compound acts as a solvent in the dissolution of one mole of IL, under extreme dilution condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Usula M, Matteoli E, Leonelli F, Mocci F, Cesare Marincola F, Gontrani L, Porcedda S. Thermo-physical properties of ammonium-based ionic liquid + N-methyl-2-pyrrolidone mixtures at 298.15 K. Fluid Phase Equilib. 2014;383:49–54. https://doi.org/10.1016/j.fluid.2014.09.031.

  2. Shamsi SA, Danielson ND. Utility of ionic liquids in analytical separations. J Sep Sci. 2007;30:1729–50. https://doi.org/10.1002/jssc.200700136.

    Article  CAS  PubMed  Google Scholar 

  3. van Rantwijk RA, Sheldon RA. Biocatalysis in ionic liquids. Chem Rev. 2007;107:2757–85. https://doi.org/10.1021/cr050946x.

    Article  CAS  PubMed  Google Scholar 

  4. Hagiwara R, Lee JS. Ionic Liquids for electrochemical devices. Anal Chem. 2006;55:23–34. https://doi.org/10.1021/ac00253a600.

    Article  Google Scholar 

  5. Zhao H. Innovative applications of ionic liquids as ‘green’ engineering liquids. Chem Eng Commun. 2006;193:1660–77. https://doi.org/10.1080/00986440600586537.

    Article  CAS  Google Scholar 

  6. Kavitha T, Venkatesu P, Devi RSR, Hofman T. Influence of alkyl chain length and temperature on thermophysical properties of ammonium-based ionic liquids with molecular solvent. J Phys Chem. 2012;116:4561–74. https://doi.org/10.1021/jp3015386.

    Article  CAS  Google Scholar 

  7. Kandil ME, Marsh KN, Goodwin ARH. Measurement of the viscosity, density, and electrical conductivity of 1-hexyl-3-methylimidazolium bis(trifluorosulfonyl)imide at temperatures between (288 and 433) K and pressures below 50 MPa. J Chem Eng Data. 2007;52:2382–7. https://doi.org/10.1021/je7003484.

    Article  CAS  Google Scholar 

  8. González EJ, González B, Calvar N, Domínguez Á. Physical properties of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate with several alcohols at T = (298.15, 313.15, and 328.15) K and atmospheric pressure. J Chem Eng Data. 2007;52:1641–8. https://doi.org/10.1021/je700029q.

  9. Kavitha T, Attri P, Venkatesu P, Devi RSR, Hofman T. Influence of temperature on thermophysical properties of ammonium ionic liquids with N-methyl-2-pyrrolidone. Thermochim Acta. 2012;545:131–40. https://doi.org/10.1016/j.tca.2012.07.004).

    Article  CAS  Google Scholar 

  10. Kavitha T, Attri P, Venkatesu P, Devi RSR, Hofman T. Temperature dependence measurements and molecular interactions for ammonium ionic liquid with N-methyl-2-pyrrolidone. J Chem Thermodyn. 2012;54:223–37. https://doi.org/10.1016/j.jct.2012.03.034.

    Article  CAS  Google Scholar 

  11. Heintz A. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J Chem Thermodyn. 2005;37:525–35. https://doi.org/10.1016/j.jct.2005.04.003.

  12. Rodríguez H, Brennecke JF. Temperature and composition dependence of the density and viscosity of binary mixtures of water + ionic liquid. J Chem Eng Data. 2006;51:2145–55. https://doi.org/10.1021/je0602824.

    Article  CAS  Google Scholar 

  13. García-Miaja G, Troncoso J, Romaní L. Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water. J Chem Thermodyn. 2009;41:161–6. https://doi.org/10.1016/j.jct.2008.10.002.

    Article  CAS  Google Scholar 

  14. Lu Q, Wang H, Ye C, Liu W, Xue Q. Room temperature ionic liquid 1-ethyl-3-hexylimidazolium- bis(trifluoromethylsulfonyl)-imide as lubricant for steel-steel contact. 2004;37:547–52. https://doi.org/10.1016/j.triboint.2003.12.003.

  15. Yao H, Zhang S, Wang J, Zhou Q, Dong H, Zhang X. Densities and viscosities of the binary mixtures of 1-ethyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide with N -methyl-2-pyrrolidone or ethanol at T = (293.15 to 323.15) K. J Chem Eng Data. 2012;57:875–81 vol. 57. https://doi.org/10.1021/je200922s.

  16. Basma NS, Headen TF, Shaffer MSP, Skipper NT, Howard CA. Local structure and polar order in liquid n-methyl-2-pyrrolidone (NMP). J Phys Chem. 2018;122:8963–71. https://doi.org/10.1021/acs.jpcb.8b08020.

    Article  CAS  Google Scholar 

  17. Nebig S, Bölts R, Gmehling J. Measurement of vapor-liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and prediction of these properties and γ∞ using modified UNIFAC (Dortmund). Fluid Phase Equilib. 2007;258:168–78. https://doi.org/10.1016/j.fluid.2007.06.001.

    Article  CAS  Google Scholar 

  18. Wieser ME, et al. Atomic weights of the elements 2011 (IUPAC Tecnical Report). Pure Appl Chem. 2013;85:1047–78. https://doi.org/10.1351/pac-rep-13-03-02.

    Article  CAS  Google Scholar 

  19. Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU. Experimental vapor pressures of 1-alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem. 2006;110:7303–6. https://doi.org/10.1021/jp060896f.

    Article  CAS  Google Scholar 

  20. Riddick JA, Bunger WB, Sakano TK. Organic solvents: physical properties and methods of purification, 4a ed. Wiley-Interscience Publication; 1986.

  21. Garrod JE, Herrington TM. Apparent molar volumes and temperatures of maximum density of dilute acqueous sucrose solutions. J Phys Chem. 1970;74:363–70.

    Article  CAS  Google Scholar 

  22. Matteoli E, Lepori L. Determination of the excess enthalpy of binary mixtures from the measurements of the heat of solution of the components: application to the perfluorohexane + hexane mixture. Fluid Phase Equilib. 2000;174:115–31. https://doi.org/10.1016/S0378-3812(00)00421-0.

    Article  CAS  Google Scholar 

  23. Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8. https://doi.org/10.1021/ie50458a036.

    Article  Google Scholar 

  24. Matteoli E, Lepori L. Use of titration calorimetry to determine excess enthalpy of binary mixtures. Fluid Phase Equilib. 1984;3.

  25. Marsh KN. Excess enthalpies of benzene + cyclohexane mixtures. Int Data Ser Sel Data Mix. 1973;1–5.

  26. Zhu S, Shen S, Benson GC, Lu BCY. Excess enthalpies of (ethanol or propan-1-ol + cyclohexane + decane) at the temperature 298.15 K. J Chem Thermodyn. 1993;25:909–17.

  27. Usula M, Caminiti R, Mocci F, Cesare Marincola F, Gontrani L, Porcedda S. NMR, calorimetry, and computational studies of aqueous solutions of N-Methyl-2-pyrrolidone. J Phys Chem. 2014;118:10493–502. https://doi.org/10.1021/jp505286z.

    Article  CAS  Google Scholar 

  28. Gnanakumari P, Rao MVP, Prasad DHL, Kumar YVLR. Vapor-liquid equilibria and excess molar enthalpies for N-methyl-2-pyrrolidone with chloroethanes and chloroethenes. J Chem Eng. 2003;48:535–40. https://doi.org/10.1021/je020065c.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is funded by the Ministero dell'Istruzione, dell'Università e della Ricerca, MIUR – Fondo Integrativo per la Ricerca, FIR. SP and GO thank Dr Enrico Matteoli and Dr Luciano Lepori for help to solve technical and theoretical issues and for being the inspiration for this work.

Author information

Authors and Affiliations

Authors

Contributions

SP and GO Conceptualization, SP, AS and GE Methodology, GO, DM and AP Formal analysis and investigation, SP and GO Writing—original draft preparation, SP, AS, GE and GO Writing—review and editing, SP Funding acquisition, SP, AS and GE Resources, SP Supervision.

Corresponding author

Correspondence to Silvia Porcedda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olla, G., Meloni, D., Salis, A. et al. Excess enthalpies of [CnMIM][NTf2] n = (2 or 10) + ethanol or + N-methyl-2-pyrrolidone binary mixtures at 298.15 K and 0.1 MPa. J Therm Anal Calorim 147, 5491–5499 (2022). https://doi.org/10.1007/s10973-021-11131-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11131-4

Keywords

Navigation