Skip to main content
Log in

Synthesis of new aromatic polyamides containing α-amino phosphonate with high thermal stability and low heat release rate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The new aromatic polyamides containing α-amino phosphonate were synthesized from phosphorus-based dicarboxylic acid 4 and various aromatic diamines by direct polycondensation reaction. Dicarboxylic acid 4 was successfully synthesized from trimethyl phosphite, 4-aminobenzoic acid and terephthaldehyde via a three-component reaction. The polymerization reaction produced the polyamides 6af with high yield and desirable inherent viscosities. The thermal properties of the all samples were investigated by thermo-gravimetric analysis (TGA). The TGA results in N2 exhibited the 10% mass loss temperatures (T10) in the ranges of 324–345 °C, while the T10 resulted from thermo-oxidative degradation were higher than those. The main data obtained by microscale combustion calorimetry revealed acceptable combustion properties such as very low peak of heat release rate for the synthesized polyamides 6af. The all of the results indicated that these polyamides can be potentially utilized as additive for improvement of thermal resistance and combustion behavior of thermoplastic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liou G-S, Hsiao S-H, Huang N-K, Yang Y-L. Synthesis, photophysical, and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials. Macromolecules. 2006;39(16):5337–46.

    CAS  Google Scholar 

  2. Hajibeygi M, Shabanian M, Khodaei-Tehrani M. Synthesis and characterization of new organosoluble poly(amide-imide)s with good thermal properties containing photosensitive and bicyclo segments in the main chain. Des Monomers Polym. 2011;14(6):617–33. https://doi.org/10.1163/156855511x601619.

    Article  CAS  Google Scholar 

  3. Trigo-López M, Miguel-Ortega Á, Vallejos S, Muñoz A, Izquierdo D, Colina Á, et al. Intrinsically colored wholly aromatic polyamides (aramids). Dyes Pigments. 2015;122:177–83.

    Google Scholar 

  4. Liou GS, Hsiao SH. Synthesis and properties of aromatic poly (ester amide)s with pendant phosphorus groups. J Polym Sci Part A Polym Chem. 2002;40(4):459–70.

    CAS  Google Scholar 

  5. Shabanian M, Varvanifarahani M, Hajibeygi M, Khonakdar HA, Ebrahimi S, Jafari SH. Effect of clay modifier on morphology, thermal properties and flammability of newly synthesized poly(sulfide–sulfone–amide). Appl Clay Sci. 2015;108:70–7. https://doi.org/10.1016/j.clay.2015.02.020.

    Article  CAS  Google Scholar 

  6. Tetsuka H, Doi Y, Abe H. Synthesis and thermal properties of novel periodic poly (ester–amide)s derived from adipate, butane-1, 4-diamine, and linear aliphatic diols. Macromolecules. 2006;39:2875–85.

    CAS  Google Scholar 

  7. Toiserkani H, Sheibani H, Saidi K. Preparation and characterization of novel organosoluble and thermally stable poly (benzimidazole-amide) s bearing phthalimide pendent groups. Eur Polym J. 2010;46(2):185–94.

    CAS  Google Scholar 

  8. Bandyopadhyay P, Banerjee S. Spiro [fluorene-9, 9′-xanthene] containing fluorinated poly (ether amide)s: synthesis, characterization and gas transport properties. Eur Polym J. 2015;69:140–55.

    CAS  Google Scholar 

  9. Hajibeygi M, Shabanian M, Moghanian H, Khonakdar H, Häußler L. Development of one-step synthesized LDH reinforced multifunctional poly (amide–imide) matrix containing xanthene rings: study on thermal stability and flame retardancy. RSC Adv. 2015;5(66):53726–35.

    CAS  Google Scholar 

  10. Liou GS, Hsiao SH. Synthesis and properties of new organosoluble and alternating aromatic poly (ester-amide-imide) s with pendant phosphorus groups. J Polym Sci Part A Polym Chem. 2001;39(10):1786–99.

    CAS  Google Scholar 

  11. Faghihi K, Hajibeygi M, Shabanian M. Synthesis and properties of novel flame-retardant and thermally stable poly (amideimide) s from N, N′-(bicyclo [2, 2, 2] oct-7-ene-tetracarboxylic)-bis-L-amino acids and phosphine oxide moiety by two different methods. Macromol Res. 2009;17(10):739–45.

    CAS  Google Scholar 

  12. Faghihi K, Hajibeygi M, Shabanian M. Novel flame-retardant and thermally stable poly (amide-imide) s based on bicyclo [2, 2, 2] oct-7-Ene-2, 3, 5, 6-tetracarboxylic diimide and phosphine oxide in the main chain: synthesis and characterization. J Chin Chem Soc. 2009;56(3):609–18.

    CAS  Google Scholar 

  13. Faghihi K, Hajibeygi M. Optically active and flame-retardant poly (amide-imide)s based on phosphine oxide moiety and N, N′-(pyromellitoyl) bis-l-amino acid in the main chain: synthesis and characterization. Chin J Polym Sci. 2010;28(4):517–25.

    CAS  Google Scholar 

  14. Liu Y-L, Tsai S-H. Synthesis and properties of new organosoluble aromatic polyamides with cyclic bulky groups containing phosphorus. Polymer. 2002;43(21):5757–62.

    CAS  Google Scholar 

  15. Weil ED, Patel NG. Iron compounds in non-halogen flame-retardant polyamide systems. Polym Degrad Stab. 2003;82(2):291–6.

    CAS  Google Scholar 

  16. Gao L-P, Wang D-Y, Wang Y-Z, Wang J-S, Yang B. A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym Degrad Stab. 2008;93(7):1308–15.

    CAS  Google Scholar 

  17. Jeong K, Kim J-J, Yoon T-H. Synthesis and characterization of novel polyimides containing fluorine and phosphine oxide moieties. Polymer. 2001;42(14):6019–30.

    CAS  Google Scholar 

  18. Levchik SV, Weil ED. A review of recent progress in phosphorus-based flame retardants. J Fire Sci. 2006;24(5):345–64.

    CAS  Google Scholar 

  19. Lin C-H, Wang C-S. Novel phosphorus-containing epoxy resins part I. Synthesis and properties. Polymer. 2001;42(5):1869–78.

    CAS  Google Scholar 

  20. Chang YL, Wang YZ, Ban DM, Yang B, Zhao GM. A novel phosphorus-containing polymer as a highly effective flame retardant. Macromol Mater Eng. 2004;289(8):703–7.

    CAS  Google Scholar 

  21. Nair C, Clouet G, Brossas J. Copolymerization of diethyl 2-(methacryloyloxy) ethyl phosphate with alkyl acrylates: reactivity ratios and glass transition temperatures. J Polym Sci Part A Polym Chem. 1988;26(7):1791–807.

    CAS  Google Scholar 

  22. Faghihi KH, Hajibeygi M. New flame retardant and optically active poly(amide-imide)s based on N-trimellitylimido-L-amino acid and phosphine oxide moiety in the main chain: synthesis and characterization. Mater Sci Pol. 2010;28(2):545–56.

    CAS  Google Scholar 

  23. Hazeri N, Maghsoodlou MT, Habibi-Khorassani SM, Aboonajmi J, Lashkari M, Sajadikhah SS. A green protocol for one-pot three-component synthesis of α-amino phosphonates catalyzed by succinic acid. Res Chem Intermed. 2014;40(5):1781–8.

    CAS  Google Scholar 

  24. Khatri CK, Satalkar VB, Chaturbhuj GU. Sulfated polyborate catalyzed Kabachnik–Fields reaction: an efficient and eco-friendly protocol for synthesis of α-amino phosphonates. Tetrahedron Lett. 2017;58(7):694–8.

    CAS  Google Scholar 

  25. Heydari A, Khaksar S, Tajbakhsh M. Trifluoroethanol as a metal-free, homogeneous and recyclable medium for the efficient one-pot synthesis of α-amino nitriles and α-amino phosphonates. Tetrahedron Lett. 2009;50(1):77–80.

    CAS  Google Scholar 

  26. Saidi MR, Azizi N. A new protocol for a one-pot synthesis of α-amino phosphonates by reaction of imines prepared in situ with trialkylphosphites. Synlett. 2002;2002(08):1347–9.

    Google Scholar 

  27. Hajibeygi M, Shabanian M, Omidi-Ghallemohamadi M. Development of new acid-imide modified Mg–Al/LDH reinforced semi-crystalline poly(amide-imide) containing naphthalene ring; study on thermal stability and optical properties. Appl Clay Sci. 2017;139:9–19. https://doi.org/10.1016/j.clay.2017.01.011.

    Article  CAS  Google Scholar 

  28. Sonnier R, Vahabi H, Ferry L, Lopez-Cuesta J. Pyrolysis-combustion flow calorimetry: a powerful tool to evaluate the flame retardancy of polymers. Washington: ACS Books; 2012.

    Google Scholar 

  29. Olszewski TK. Environmentally benign syntheses of α-substituted phosphonates: preparation of α-amino-and α-hydroxyphosphonates in water, in ionic liquids, and under solvent-free conditions. Synthesis. 2014;46(04):403–29.

    Google Scholar 

  30. Duan L, Yang H, Song L, Hou Y, Wang W, Gui Z, et al. Hyperbranched phosphorus/nitrogen-containing polymer in combination with ammonium polyphosphate as a novel flame retardant system for polypropylene. Polym Degrad Stab. 2016;134:179–85.

    CAS  Google Scholar 

  31. Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, et al. Phosphorus polyester versus aluminium phosphinate in poly (butylene terephthalate) (PBT): flame retardancy performance and mechanisms. Polym Degrad Stab. 2011;96(5):875–84.

    CAS  Google Scholar 

  32. Hajibeygi M, Maleki M, Shabanian M, Ducos F, Vahabi H. New polyvinyl chloride (PVC) nanocomposite consisting of aromatic polyamide and chitosan modified ZnO nanoparticles with enhanced thermal stability, low heat release rate and improved mechanical properties. Appl Surf Sci. 2018;439:1163–79. https://doi.org/10.1016/j.apsusc.2018.01.255.

    Article  CAS  Google Scholar 

  33. Li H, Ning N, Zhang L, Wang Y, Liang W, Tian M. Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym Degrad Stab. 2014;105:86–95.

    CAS  Google Scholar 

  34. Yamazaki N, Matsumoto M, Higashi F. Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. J Polym Sci Polym Chem Ed. 1975;13(6):1373–80. https://doi.org/10.1002/pol.1975.170130609.

    Article  CAS  Google Scholar 

  35. Hajibeygi M, Omidi-Ghallemohamadi M. One-step synthesized azo-dye modified Mg–Al LDH reinforced biobased semi-aromatic polyamide containing naphthalene ring; study on thermal stability and optical properties. J Polym Res. 2017;24(4):61. https://doi.org/10.1007/s10965-017-1212-9.

    Article  CAS  Google Scholar 

  36. Nechifor M. Synthesis and properties of some aromatic polyamides with coumarin chromophores. React Funct Polym. 2009;69(1):27–35.

    CAS  Google Scholar 

  37. Dümichen E, Braun U, Kraemer R, Deglmann P, Senz R. Thermal extraction combined with thermal desorption: a powerful tool to investigate the thermo-oxidative degradation of polyamide 66 materials. J Anal Appl Pyrol. 2015;115:288–98.

    Google Scholar 

  38. Seefeldt H, Duemichen E, Braun U. Flame retardancy of glass fiber reinforced high temperature polyamide by use of aluminum diethylphosphinate: thermal and thermo-oxidative effects. Polym Int. 2013;62(11):1608–16.

    CAS  Google Scholar 

  39. Samyn F, Bourbigot S. Thermal decomposition of flame retarded formulations PA6/aluminum phosphinate/melamine polyphosphate/organomodified clay: interactions between the constituents? Polym Degrad Stab. 2012;97(11):2217–30.

    CAS  Google Scholar 

  40. Manzi-Nshuti C, Hossenlopp JM, Wilkie CA. Comparative study on the flammability of polyethylene modified with commercial fire retardants and a zinc aluminum oleate layered double hydroxide. Polym Degrad Stab. 2009;94(5):782–8.

    CAS  Google Scholar 

  41. Shabanian M, Mirzakhanian Z, Moghanian H, Hajibeygi M, Salimi H, Khonakdar HA. Thermal, combustion and optical properties of new polyimide/ODA-functionalized Fe3O4 nanocomposites containing xanthene and amide groups. J Therm Anal Calorim. 2017;129(1):147–59.

    CAS  Google Scholar 

  42. Schartel B, Kunze R, Neubert D. Red phosphorus-controlled decomposition for fire retardant PA 66. J Appl Polym Sci. 2002;83(10):2060–71.

    CAS  Google Scholar 

  43. Gallo E, Braun U, Schartel B, Russo P, Acierno D. Halogen-free flame retarded poly (butylene terephthalate)(PBT) using metal oxides/PBT nanocomposites in combination with aluminium phosphinate. Polym Degrad Stab. 2009;94(8):1245–53.

    CAS  Google Scholar 

  44. Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly (1, 4-butylene terephthalate). Macromol Mater Eng. 2008;293(3):206–17.

    CAS  Google Scholar 

  45. Hu S, Song L, Pan H, Hu Y. Thermal properties and combustion behaviors of chitosan based flame retardant combining phosphorus and nickel. Ind Eng Chem Res. 2012;51(9):3663–9.

    CAS  Google Scholar 

  46. Lyon RE, Walters RN. Pyrolysis combustion flow calorimetry. J Anal Appl Pyrol. 2004;71(1):27–46.

    CAS  Google Scholar 

  47. Zanetti M, Kashiwagi T, Falqui L, Camino G. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mater. 2002;14(2):881–7.

    CAS  Google Scholar 

  48. Shi Y, Kashiwagi T, Walters RN, Gilman JW, Lyon RE, Sogah DY. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: enhanced flame retardant and mechanical properties. Polymer. 2009;50(15):3478–87. https://doi.org/10.1016/j.polymer.2009.06.013.

    Article  CAS  Google Scholar 

  49. Hajibeygi M, Shabanian M, Khonakdar HA. Zn–Al LDH reinforced nanocomposites based on new polyamide containing imide group: from synthesis to properties. Appl Clay Sci. 2015;114:256–64. https://doi.org/10.1016/j.clay.2015.06.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Kharazmi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Hajibeygi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajibeygi, M., Jafarzadeh, H., Shabanian, M. et al. Synthesis of new aromatic polyamides containing α-amino phosphonate with high thermal stability and low heat release rate. J Therm Anal Calorim 138, 3949–3959 (2019). https://doi.org/10.1007/s10973-019-08383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08383-6

Keywords

Navigation