Skip to main content
Log in

Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the results of several experiments have been used to obtain the thermal conductivity of multi walls carbon nanotubes-water nanofluid. For this purpose, COOH-functionalized MWCNTs nanoparticles have divided into different solid volume fractions in order to disperse in water as the base fluid by different dispersion methods. The thermal conductivity measurement applied in different solid concentrations, up to 1 %, and at the temperatures ranging from 25 to 55 °C. In this paper, based on the experimental data, a new correlation for predicting the thermal conductivity of COOH-functionalized MWCNTs/water nanofluid proposed. After that, for simulating the thermal conductivity of this nanofluid, the artificial neural network is used. For this purpose, multilayer percepetron neural network is used. The network input variables are temperature and solid volume fraction, and the network output variable is thermal conductivity. The results extracted from the artificial neural network show good agreement with the experimental data. The mean square error value is 4.04E−06 that shows excellent performance of artificial neural network to predict thermal conductivity of COOH-functionalized MWCNTs/water nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

k :

Thermal conductivity, Wm−1 K−1

Re:

Reynolds number

T :

Temperature, K

MSE:

Mean square error

RMSE:

Root mean square error

MAE:

Maximum absolute error

MLP:

Feedforward multilayer percepetron

φ :

Solid volume fraction

b:

Base fluid

nf:

Nanofluid

Pred:

Predicted value

Exp:

Experimental value

References

  1. Saidur R, Leong KY. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  2. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  3. Wang W. A comprehensive model for the enhanced thermal conductivity of nanofluids. J Adv Res Phys. 2012;3:5.

    CAS  Google Scholar 

  4. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.

    Article  CAS  Google Scholar 

  5. Gupta M, Arora N, Kumar R, Kumar S, Dilbaghi N. A comprehensive review of experimental investigations of forced convective heat transfer characteristics for various nanofluids. Int J Mech Mater Eng. 2014;9:1–21.

    Article  CAS  Google Scholar 

  6. Vajjha RS, Das DK. A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. Int J Heat Mass Transf. 2012;55:4063–78.

    Article  CAS  Google Scholar 

  7. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83.

    Article  CAS  Google Scholar 

  8. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Heat transfer characteristics and pressure drop of COOH-functionalized DWCNTs/water nanofluid in turbulent flow at low concentrations. Int J Heat Mass Transf. 2014;73:186–94.

    Article  Google Scholar 

  9. Phuoc TX, Massoudi M, Chen RH. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci. 2011;50:12–8.

    Article  CAS  Google Scholar 

  10. Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R. Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf. 2012;55:1529–35.

    Article  CAS  Google Scholar 

  11. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids Measurement, correlation, sensitivity analysis, and comparisons with literature reports. J Therm Anal Calorim. 2014;117:675–81. doi:10.1007/s10973-014-3771-x.

    Article  CAS  Google Scholar 

  12. Barbe´s B, Pa´ramo R, Blanco E, Pastoriza-Gallego MJ, Pin˜eiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3nanofluids. J Thermal Anal Calorim. 2013;11:1615–25.

    Article  Google Scholar 

  13. Papari MM, Yousefi F, Moghadasi J, Karimi H, Campo A. Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. Int J Therm Sci. 2011;50:44–52.

    Article  CAS  Google Scholar 

  14. Hemmat Esfe M, Saedodin S, Mahian M, Wongwises S. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: effects of particle size, temperature, and concentration. Int Commun Heat Mass Transf. 2014;58:138–46.

    Article  CAS  Google Scholar 

  15. Sundar LS, Sharma KV, Naik MT, Singh MK. Empirical and theoretical correlations on viscosity of nanofluids: a review. Renew Sustain Energy Rev. 2013;25:670–86.

    Article  CAS  Google Scholar 

  16. Hemmat Esfe M, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO—EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci. 2014;55:1–5.

    Article  CAS  Google Scholar 

  17. Khaleduzzaman SS, Mahbubul IM, Shahrul IM, Saidur R. Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. Int Commun Heat Mass Transf. 2013;49:110–4.

    Article  CAS  Google Scholar 

  18. Hemmat Esfe M, Saedodin S, Asadi M, Karimipour A. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids: finding a critical temperature. J Therm Anal Calorim. doi:10.1007/s10973-015-4417-3.

  19. Kurt H, Kayfeci M. Prediction of thermal conductivity of ethylene glycol–water solutions by using artificial neural networks. Appl Energy. 2009;86:2244–8.

    Article  CAS  Google Scholar 

  20. Hojjat M, Etemad SG, Bagheri R, Thibault J. Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network. Int J Heat Mass Transf. 2011;54:1017–23.

    Article  CAS  Google Scholar 

  21. Hemmat Esfe M, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises W. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  CAS  Google Scholar 

  22. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Thermophysical properties, heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluid. Int Commun Heat Mass Transfer. 2014;58:176–83.

    Article  CAS  Google Scholar 

  23. Longo GA, Zilio C, Ceseracciu E, Reggiani M. Application of artificial neural network (ANN) for the prediction of thermal conductivity of oxide–water nanofluids. Nano Energy. 2012;1:290–6.

    Article  CAS  Google Scholar 

  24. Di Nicola G, Ciarrocchi E, Coccia G. Correlations of thermal conductivity for liquid refrigerants at atmospheric pressure or near saturation. Int J Refrig. 2014;45:168–76.

    Article  Google Scholar 

  25. Hemmat Esfe M, Saedodin S, Mahmoodi M. Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow. Exp Therm Fluid Sci. 2014;52:68–78.

    Article  CAS  Google Scholar 

  26. Hemmat Esfe M, Saedodin S. Turbulent forced convection heat transfer and thermophysical properties of Mgo–water nanofluid with consideration of different nanoparticles diameter, an empirical study. J Therm Anal Calorim. doi:10.1007/s10973-014-4197-1.

  27. Hemmat Esfe M, Saedodin S, Asadi A. An empirical investigation on the dynamic viscosity of Mg(OH)2- ethylene glycol in different solid concentrations and proposing new correlation based on experimental data. Int J Nat Eng Sci. 2014;8(3):29–34.

    Google Scholar 

  28. Hemmat Esfe M, Zare Ghadi A, Mirtalebi Esforjani SS, Akbari M. Combined convection in a lid-driven cavity with an inside obstacle subjected to Al2O3-water nanofuid: effect of solid volume fraction and nanofuid variable properties. Acta Phys Pol A. 2013;12(4):665–72. doi:10.12693/APhysPolA.124.665.

    Article  Google Scholar 

  29. Hemmat Esfe M, Niazi S, Sadegh Mirtalebi Esforjani S, Akbari M. Mixed convection flow and heat transfer in a ventilated inclined cavity containing hot obstacles subjected to a nanofluid. Heat Transf Res. 2014;45(4):309–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hemmat Esfe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Naderi, A., Akbari, M. et al. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim 121, 1273–1278 (2015). https://doi.org/10.1007/s10973-015-4565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4565-5

Keywords

Navigation