Skip to main content
Log in

Solid–liquid interfacial energy of solid succinonitrile in equilibrium with succinonitrile-1,4-diiodobenzene eutectic liquid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The grain boundary groove shapes for equilibrated solid SCN in equilibrium with the SCN-0.5 mol% DIB eutectic liquid have been directly observed by using a horizontal linear temperature gradient apparatus. The ratio of thermal conductivity of equilibrated liquid to thermal conductivity of solid SCN has also been determined to be 0.90. From the observed grain boundary groove shapes and measured thermal conductivity ratio, the Gibbs–Thomson coefficient (Г) of solid SCN has been determined to be (5.46 ± 0.55) × 10−8 K m. The solid–liquid interfacial energy (σ SL) and the grain boundary energy of solid SCN have also been determined to be (8.25 ± 1.24) × 10−3 J m−2 and (15.84 ± 2.53) × 10−3 J m−2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eustathopoulos N, Nicholas MG, Drevet B. Wettability at High temperatures (Pergamon Materials Series). Oxford: Pergamon; 1999.

    Google Scholar 

  2. Martin JW, Doherty RD, Cantor B. Stability of microstructure in metallic systems (Cambridge Solid State Science Series). Cambridge: Cambridge University Press; 1997.

    Google Scholar 

  3. Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys. 1950;2:1022.

    Article  Google Scholar 

  4. Jones DRH. The free energies of solid–liquid interfaces. J Mater Sci. 1974;9:1.

    Article  CAS  Google Scholar 

  5. Eustathopoulos N. Energetic of solid–liquid interfaces metals and systems. Int Met Rev. 1983;28:189.

    Article  CAS  Google Scholar 

  6. Bolling GF, Tiller WA. Growth from the melt. I. Influence of surface intersection in pure metals. J Appl Phys. 1960;31:1345.

    Article  CAS  Google Scholar 

  7. Jones DRH, Chadwick GA. Experimental measurement of solid–liquid interfacial energies of transparent materials. Philos Mag. 1970;22:291.

    Article  CAS  Google Scholar 

  8. Nash GE, Glicksman ME. A general method for determining solid–liquid interfacial free energies. Philos Mag. 1971;24:577.

    Article  CAS  Google Scholar 

  9. Jones DRH. Philos Mag. 1972;20:569.

    Google Scholar 

  10. Hardy SC. A grain boundary groove measurement of the surface tension between ice and water. Philos Mag. 1977;35:471.

    Article  CAS  Google Scholar 

  11. Singh NB, Glicksman ME. Determination of the mean solid–liquid interface energy of pivalic acid. J Cryst Growth. 1989;98:573.

    Article  CAS  Google Scholar 

  12. Garanasy L, Tegze M, Ludwig A. Solid–liquid interfacial free energy. Mater Sci Eng A Struct Prop. 1991;133:577.

    Article  Google Scholar 

  13. Ketcham WM, Hobbs PV. Experimental determination of the surface energies of ice. Philos Mag. 1969;19:1161.

    Article  CAS  Google Scholar 

  14. Thomas JD, Staveley AK. Study of the supercooling of droplets of some molecular liquids. J Chem Soc. 1952;45:69.

    Google Scholar 

  15. Hoyt JJ, Asta M, Haxhimali T, Karma A, Napolitano RE, Trivedi R, Laird BB, Morris JR. Crystalmelt interfaces and solidification morphologies in metals and systems. MRS Bull. 2004;29:935.

    Article  CAS  Google Scholar 

  16. Trivedi R, Hunt JD. The mechanics of solder system wetting and spreading. New York: Van Nostrand Reinhold; 1993. p. 191.

    Book  Google Scholar 

  17. Gündüz M, Hunt JD. The measurement of solid–liquid surface energies in the Al–Cu, Al–Si Pb–Sn systems. Acta Metall. 1985;33:1651.

    Article  Google Scholar 

  18. Gündüz M, Hunt JD. Solid–liquid surface energies in the Al–Mg systems. Acta Mater. 1989;37:1839.

    Article  Google Scholar 

  19. Maraşlı N, Hunt JD. Solid–liquid surface energies in the Al–CuAl2, Al–NiAl3 and Al–Ti systems. Acta Mater. 1996;44:1085.

    Article  Google Scholar 

  20. Bayender B, Maraşlı N, Çadırlı E, Şişman H, Gündüz M. Solid–liquid surface energy of pivalic acid. J Cryst Growth. 1998;194:119.

    Article  CAS  Google Scholar 

  21. Bayender B, Maraşlı N, Çadırlı E, Gündüz M. Solid–liquid surface energy of campene. Mater Sci Eng A Struct Prop. 1999;270:343.

    Article  Google Scholar 

  22. Hunt JD, Jackson KA, Brown H. Temperature-gradient microscope stage suitable for freezing materials with melting points between −100 and 200 degrees. Rev Sci Instr. 1966;37:805.

    Article  CAS  Google Scholar 

  23. Maraşlı N, Keşlioğlu K, Arslan B. Solid–liquid interface energies in the succinonitrile and succinonitrile–carbon tetrabromide system. J Cryst Growth. 2003;247:613.

    Article  Google Scholar 

  24. Böyük U, Maraşlı N. Investigation of liquid composition effect on Gibbs–Thomson coefficient and solid–liquid interfacial energy in SCN based binary systems. Mater Charact. 2008;59:998.

    Article  Google Scholar 

  25. Böyük U, Keşlioğlu K, Erol M, Maraşlı N. Measurement of solid–liquid interfacial energy in succinonitrile–pyrene system. Mater Lett. 2005;59:2953.

    Article  Google Scholar 

  26. Ocak Y, Akbulut S, Böyük U, Erol M, Keşlioğlu K, Maraşlı N. Solid–liquid interfacial energy for solid succinonitrile in equilibrium with succinonitrile dichlorobenzene liquid. Thermochim Acta. 2006;445:86.

    Article  CAS  Google Scholar 

  27. Keşlioğlu K, Böyük U, Erol M, Maraşlı N. Experimental determination of solid–liquid interfacial energy for succinonitrile solid solution in equilibrium with the succinonitrile–(D) camphor liquid. J Mater Sci. 2006;41:7939.

    Article  Google Scholar 

  28. Akbulut S, Ocak Y, Böyük U, Erol M, Keslioğlu K, Maraşlı N. Measurement of solid -liquid interfacial energy in the pyrene succinonitrile monotectic system. J Phys Condens Matter. 2006;18:8403.

    Article  CAS  Google Scholar 

  29. Ocak Y, Akbulut S, Böyük U, Erol M, Keşlioğlu K, Maraşlı N. Measurement of solid–liquid interfacial energy for solid D-camphor solution in equilibrium with succinonitrile D-camphor liquid. Scr Mater. 2006;55:235.

    Article  CAS  Google Scholar 

  30. Pehlivanoğlu T, Böyük U, Keşlioğlu K, Ülgen A, Maraşlı N. Interfacial energies of p-dichlorobenzene succinonitrile system. Thermochim Acta. 2007;463:44.

    Article  Google Scholar 

  31. Kant S, Reddi RSB, Rai RN. Solid–liquid equilibrium, thermal, crystallization and microstructural studies of organic monotectic alloy. Fluid Phase Equilib. 2010;291:71–5.

    Article  CAS  Google Scholar 

  32. Gruggel RN, Well AG. Alloy solidification in systems containing a liquid miscibility gap. Metall Trans A. 1981;12:669–81.

    Article  Google Scholar 

  33. Herlach DM, Cochrane RF, Egry I, Fecht HJ, Greer AL. Containerless processing in the study of metallic melts and their solidification. Int Mater Rev. 1993;38:273.

    Article  CAS  Google Scholar 

  34. Trivedi R, Kurz W. Dendritic growth. Int Mater Rev. 1994;32:49–74.

    Article  Google Scholar 

  35. Majumdar B, Chattopadhyay K. Metall Trans A. 1996;27:2053–7.

    Article  Google Scholar 

  36. Glicksman ME, Singh NB, Chopra M. Gravitational effects in dendritic growth. Manuf Space. 1982;11:207–18.

    Google Scholar 

  37. Rai US, Rai RN. Some physicochemical studies on organic eutectics and molecular complex: urea–p-nitrophenol system. J Mater Res. 1999;14:1299–305.

    Article  CAS  Google Scholar 

  38. Teng J, Liu S. Re-determination of succinonitrile (SCN)–camphor phase diagram. J Cryst Growth. 2006;290:248–57.

    Article  CAS  Google Scholar 

  39. Farges JP. Organic conductors. New York: Marcel Dekker Inc.; 1994.

    Google Scholar 

  40. Gunter P. Nonlinear optical effects and materials. Berlin: Springer; 2000.

    Book  Google Scholar 

  41. Singh NB, Henningsen T, Hopkins RH, Mazelsky R, Hamacher RD, Supertzi EP, Hopkins FK, Zelmon DE, Singh OP. Nonlinear optical characteristics of binary organic system. J Cryst Growth. 1993;128:976–80.

  42. Derby B, Favier JJ. A criterion for the determination of monotectic structure. Acta Metall. 1983;7:1123–130.

  43. Ecker A, Frazier DO, Alexander JID. Fluid flow in the melt of solidifying monotectic alloys. Metall Trans A. 1989;20:2517–27.

  44. Alarco PJ, Yaser AL, Abouimran A, Armand M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nate Mater. 2004;3:476–81.

    Article  CAS  Google Scholar 

  45. http://www.omkarchemicals.com/diiodobenzene.html.

  46. Porter DA, Easterling KE. Phase transformations in metals and systems. UK: Van Nostrnad Reinhold Co., Ltd.; 1991.

    Google Scholar 

  47. McCartney DG, D Phil Thesis: University of Oxford: UK; 1981, p. 85.

  48. Derollez P, Lefebvre J, Descamps M, Press W, Fontaine H. Structure of succinonitrile in its plastic phase. Condens Mater. 1990;2:6893–903.

    Article  CAS  Google Scholar 

  49. Jones H. An evaluation of measurements of solid/liquid interfacial energies in metallic system systems by the groove profile method. Metall Mater Trans A. 2007;38A:1563.

    Article  CAS  Google Scholar 

  50. Schaefer RJ, Glicksman ME, Ayers JD. High-confidence measurement of solid/liquid surface energy in a pure material. Philos Mag. 1975;32:725–43.

    Article  CAS  Google Scholar 

  51. Karadağ SB, Altıntas Y, Öztürk E, Aksöz S, Keşlioğlu K, Maraşlı N. Solid–liquid interfacial energy of solid succinonitrile solution in equilibrium with succinonitrile–neopentylglycol eutectic liquid. J Cryst Growth. 2013;380:209–17.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by Erciyes University Scientific Research Project Unit under Contract No: FYL-2013-4628. The authors are grateful to Erciyes University Scientific Research Project Unit for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Keşlioğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersoy, Ş.B., Altıntas, Y., Karadağ, S.B. et al. Solid–liquid interfacial energy of solid succinonitrile in equilibrium with succinonitrile-1,4-diiodobenzene eutectic liquid. J Therm Anal Calorim 119, 1867–1874 (2015). https://doi.org/10.1007/s10973-014-4363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4363-5

Keywords

Navigation