Skip to main content
Log in

Thermal behavior and structure of clay/nylon-6 nanocomposite synthesized by in situ solution polymerization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article discusses the effect of increasing mass percentage of nanoclay on the thermal, structural and morphological properties of nanoclay/nylon-6 nanocomposite. Polymerization of ε-caprolactam conducted in the presence of clay resulted in increased d-spacing and expansion of the clay galleries. A combination of differential scanning calorimetry, X-ray diffraction and electron microscopy was used to study the structure–property relationship. The effect of clay on the melting behavior of nylon-6 was studied by using quenched and normally cooled samples. The clay particles acted as external nucleating agents, and a dramatic effect on the crystallization behavior of nylon-6 was observed. The nylon-6 crystals formed are predominantly of the γ-type in the presence of clay. The presence of up to 1 % of clay lead to an increase in the heat of fusion. For nylon-6 samples containing greater than 1 % clay, the heat of fusion decreased significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ε-caprolactam. J Polym Sci A Polym Chem. 1993;31(4):983–6.

    Article  CAS  Google Scholar 

  2. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide–clay hybrid. J Polym Sci A Polym Chem. 1993;31(10):2493–8.

    Article  CAS  Google Scholar 

  3. Lincoln DM, Vaia RA, Wang ZG, Hsiao BS. Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites. Polymer. 2001;42(4):1621–31.

    Article  CAS  Google Scholar 

  4. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, et al. Mechanical properties of nylon 6–clay hybrid. J Mater Res. 1993;8(05):1185–9.

    Article  CAS  Google Scholar 

  5. Liu L, Qi Z, Zhu X. Studies on nylon 6/clay nanocomposites by melt-intercalation process. J Appl Polym Sci. 1999;71(7):1133–8.

    Article  CAS  Google Scholar 

  6. Shanmuganathan K, Deodhar S, Dembsey N, Fan Q, Calvert PD, Warner SB, et al. Flame retardancy and char microstructure of nylon-6/layered silicate nanocomposites. J Appl Polym Sci. 2007;104(3):1540–50.

    Article  CAS  Google Scholar 

  7. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J. Polymer/layered silicate nanocomposites as high performance ablative materials. Appl Clay Sci. 1999;15(1–2):67–92.

    Article  CAS  Google Scholar 

  8. Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauchi T, et al. Interaction of nylon 6–clay surface and mechanical properties of nylon 6–clay hybrid. J Appl Polym Sci. 1995;55(1):119–23.

    Article  CAS  Google Scholar 

  9. Somwangthanaroj A, Tantiviwattanawongsa M, Tanthapanichakoon W. Mechanical and gas barrier properties of nylon 6/clay nanocomposite blown films. Eng J. 2012. doi:10.4186/ej.2012.16.2.93.

  10. Ke Y, Long C, Qi Z. Crystallization, properties, and crystal and nanoscale morphology of PET–clay nanocomposites. J Appl Polym Sci. 1999;71(7):1139–46.

    Article  CAS  Google Scholar 

  11. Xie S, Zhang S, Wang F, Liu H, Yang M. Influence of annealing treatment on the heat distortion temperature of nylon-6/montmorillonite nanocomposites. Polym Eng Sci. 2005;45(9):1247–53.

    Article  CAS  Google Scholar 

  12. Singh-Beemat J, Iroh JO. Effect of clay on the corrosion inhibition and dynamic mechanical properties of epoxy ester–polyurea–polysiloxane hybrid coatings. Polym Eng Sci. 2012;52(12):2611–9.

    Article  CAS  Google Scholar 

  13. Gawad AA, Esawi AK, Ramadan A. Structure and properties of nylon 6–clay nanocomposites: effect of temperature and reprocessing. J Mater Sci. 2010;45(24):6677–84.

    Article  Google Scholar 

  14. Ryba J, Ujhelyiová A, Krištofič M, Vassová I. Thermal properties of PA 6 and PA 6 modified with copolyamides and layered silicates. J Therm Anal Calorim. 2010;101(3):1027–37.

    Article  CAS  Google Scholar 

  15. Ricco L, Russo S, Orefice G, Riva F. Anionic poly(ε-caprolactam): relationships among conditions of synthesis, chain regularity, reticular order, and polymorphism. Macromolecules. 1999;32(23):7726–31.

    Article  CAS  Google Scholar 

  16. Ricco L, Monticelli O, Russo S, Paglianti A, Mariani A. Fast-activated anionic polymerization of ε-caprolactam in suspension, 1. Role of the continuous phase on characteristics and properties of powdered PA6. Macromol Chem Phys. 2002;203(10–11):1436–44.

    Article  CAS  Google Scholar 

  17. Vasiliu-Oprea C, Dan F. On the relation between synthesis parameters and morphology of anionic polycaproamide obtained in organic media. I. Influence of the Na[O(CH2)2OCH3]2AlH2/isophorone diisocyanate catalytic system. J Appl Polym Sci. 1996;62(10):1517–27.

    Article  CAS  Google Scholar 

  18. Khodabakhshi K, Gilbert M, Fathi S, Dickens P. Anionic polymerisation of caprolactam at the small-scale via DSC investigations. J Therm Anal Calorim 2014;115(1):383–391.

    Google Scholar 

  19. Vasiliu-Oprea C, Dan F. On the relation between synthesis parameters and morphology of anionic polycaproamide obtained in organic media. II. Influence of the Na[O(CH2)2OCH3]2AIH2/aliphatic diisocyanates catalytic systems. J Appl Polym Sci. 1997;64(13):2575–83.

    Article  CAS  Google Scholar 

  20. Chrzczonowicz S, Wlodarczyk M, Ostaszewski B. Polymerization of ε-caprolactam and ζ-enantholactam in non-polar solvents. Die Makromol Chem. 1960;38(1):159–67.

    Article  CAS  Google Scholar 

  21. Dan F, Vasiliu-Oprea C. On the relationship between synthesis parameters and morphology of the anionic polycaproamide obtained in organic media. III. Macroporous powders obtained using CO2 and carbodiimides as activating compounds. J Appl Polym Sci. 1998;67(2):231–43.

    Article  CAS  Google Scholar 

  22. Szwarc M. ‘Living’ polymers. Nature. 1956;178(4543):1168–9.

    Article  CAS  Google Scholar 

  23. Menczel J. The rigid amorphous fraction in semicrystalline macromolecules. J Therm Anal Calorim. 2011;106(1):7–24.

    Article  CAS  Google Scholar 

  24. Mao B, Cebe P. Avrami analysis of melt crystallization behavior of Trogamid. J Therm Anal Calorim. 2013;113(2):545–50.

    Article  CAS  Google Scholar 

  25. Brucato V, Crippa G, Piccarolo S, Titomanlio G. Crystallization of polymer melts under fast cooling. I: nucleated polyamide 6. Polym Eng Sci. 1991;31(19):1411–6.

    Article  CAS  Google Scholar 

  26. Painter PC, Coleman MM. Fundamentals of polymer science: an introductory text. 2nd ed. London: Taylor & Francis; 1998.

    Google Scholar 

  27. Bell JP, Slade PE, Dumbleton JH (1968) Multiple melting in nylon 66. J Polym Sci A Part A-2 Polym Phys 6(10):1773–1781.

    Google Scholar 

  28. Blundell DJ. On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer. 1987;28(13):2248–51.

    Article  CAS  Google Scholar 

  29. Li Y, Zhu X, Tian G, Yan D, Zhou E. Multiple melting endotherms in melt-crystallized nylon 10,12. Polym Int. 2001;50(6):677–82.

    Article  CAS  Google Scholar 

  30. Zhou C, Clough SB. Multiple melting endotherms of poly(ethylene terephthalate). Polym Eng Sci. 1988;28(2):65–8.

    Article  CAS  Google Scholar 

  31. Xie S, Zhang S, Liu H, Chen G, Feng M, Qin H, et al. Effects of processing history and annealing on polymorphic structure of nylon-6/montmorillonite nanocomposites. Polymer. 2005;46(14):5417–27.

    Article  CAS  Google Scholar 

  32. Murthy NS, Aharoni SM, Szollosi AB. Stability of the γ form and the development of the α form in nylon 6. J Polym Sci Polym Phys. 1985;23(12):2549–65.

    Article  CAS  Google Scholar 

  33. Holmes DR, Bunn CW, Smith DJ. The crystal structure of polycaproamide: nylon 6. J Polym Sci. 1955;17(84):159–77.

    Article  CAS  Google Scholar 

  34. Fornes TD, Paul DR. Crystallization behavior of nylon 6 nanocomposites. Polymer. 2003;44(14):3945–61.

    Article  CAS  Google Scholar 

  35. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49(15):3187–204.

    Article  CAS  Google Scholar 

  36. Arimoto H, Ishibashi M, Hirai M, Chatani Y. Crystal structure of the γ-form of nylon 6. J Polym Sci Part A: Gen Pap. 1965;3(1):317–26.

    CAS  Google Scholar 

  37. Zhao Z, Yu W, Liu Y, Zhang J, Shao Z. Isothermal crystallization behaviors of nylon-6 and nylon-6/montmorillonite nanocomposite. Mater Lett. 2004;58(5):802–6.

    Article  CAS  Google Scholar 

  38. Hegde RR, Bhat GS, Deshpande B. Morphology and properties of nylon 6 blown films reinforced with different weight percentage of nanoclay additives. Int J Polym Sci. 2012;2012:14.

    Article  Google Scholar 

  39. Zhang Y, Yang JH, Ellis TS, Shi J. Crystal structures and their effects on the properties of polyamide 12/clay and polyamide 6–polyamide 66/clay nanocomposites. J Appl Polym Sci. 2006;100(6):4782–94.

    Article  CAS  Google Scholar 

  40. Swain SK, Isayev AI. PA6/clay nanocomposites by continuous sonication process. J Appl Polym Sci. 2009;114(4):2378–87.

    Article  CAS  Google Scholar 

  41. Li H, Wu Y, Sato H, Kong L, Zhang C, Huang K, et al. A new facile method for preparation of nylon-6 with high crystallinity and special morphology. Macromolecules. 2009;42(4):1175–9.

    Article  CAS  Google Scholar 

  42. Murthy NS, Minor H, Akkapeddi MK, Buskirk BV. Characterization of polymer blends and alloys by constrained profile-analysis of X-ray diffraction scans. J Appl Polym Sci. 1990;41(9–10):2265–72.

    Article  CAS  Google Scholar 

  43. Aharoni SM. n-Nylons, their synthesis, structure, and properties. London: Wiley; 1997.

    Google Scholar 

Download references

Acknowledgements

This study was funded by Grants from office of naval research (ONR) # N00014-09-1-0980 and National Science Foundation (NSF) # CMMI-0758656. We would also like to thank Soumyarwit Manna at Advanced Material Characterization Center (AMCC), university of Cincinnati who assisted in capturing the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jude O. Iroh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyas, A., Iroh, J.O. Thermal behavior and structure of clay/nylon-6 nanocomposite synthesized by in situ solution polymerization. J Therm Anal Calorim 117, 39–52 (2014). https://doi.org/10.1007/s10973-014-3681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3681-y

Keywords

Navigation