Skip to main content
Log in

Characterisation and evaluation of the environmental impact on historical parchments by differential scanning calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Our recent developments concerning the assessment of parchments deterioration using DSC are reported. Measurements performed on samples in excess water conditions, in static air and gas flow provided qualitative and quantitative information on parchment ageing and deterioration at microscopic and mesoscopic level, when assembly of fibres/fibrils is weakened, partially and eventually completely lost, and at molecular level, when triple helix uncoiling occurs. A damage ranking scale based on a large collection of DSC parameters obtained by investigating artificially aged samples was set up. Deconvolution of the DSC thermal denaturation peaks in excess water enabled evaluating and discriminating stability of parchments with similar damage levels. Further experimental evidences such as softening of the crystalline fraction of collagen, thermal-oxidation and collagen gelatinisation were detected by DSC measurements in gas flow and static air, and related to specific deterioration patterns. DSC measurement of wet samples provided an objective and reliable method for evaluating parchment shrinkage temperature overcoming the limitations of conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guareschi I. Della pergamena, con osservazioni ed esperienze sul ricupero e sul restauro di codici danneggiati negli incendi e notizie storiche. Enciclopedia di Chimica, annual supplement, vol. XXI, Torino, 1905.

  2. Wiedemann HG, Bayer G. Thermoanalytical study on ancient materials and light it sheds on the origin of letters and words. Thermochim Acta. 1986;100:283–314.

    Article  CAS  Google Scholar 

  3. Wiedemann HG, Bayer G. Approach to ancient Chinese artifacts by means of thermal analysis. Thermochim Acta. 1992;200:215–55.

    Article  CAS  Google Scholar 

  4. Wiedemann HG. Thermoanalytische Untersuchung von Baumaterialien Ägyptischer Mumiensärge. J Therm Anal. 1998;52:93–107.

    Article  CAS  Google Scholar 

  5. Chahine C. Changes in hydrothermal stability of leather and parchment with deterioration: a DSC study. Thermochim Acta. 2000;365:101–10.

    Article  CAS  Google Scholar 

  6. Fessas D, Schiraldi A, Tenni R, Vitellaro Zuccarello L, Bairati A, Facchini A. Calorimetric, biochemical and morphological investigations to validate a restoration method of fire injured ancient parchment. Thermochim Acta. 2000;348:129–37.

    Article  CAS  Google Scholar 

  7. Budrugeac P, Miu L. The suitability of DSC method for damage assessment and certification of historical leathers and parchments. J Cult Heritage. 2008;9:146–53.

    Article  Google Scholar 

  8. Della Gatta G, Badea E, Ceccarelli R, Usacheva T, Mašić A. Assessment of damage in old parchments by DSC and SEM. J Therm Anal Calorim. 2005;82:637–49.

    Article  CAS  Google Scholar 

  9. Badea E, Della Gatta G. Assessment of the thermal stability of collagen within parchment by differential scanning calorimetry in excess water. In: Albu L, editor. Advanced materials and processes for ecological manufacturing of leathers. Iasi, Romania: Performantica; 2007. p. 14–28.

  10. Della Gatta G, Badea E, Mašić A, Ceccarelli R. Structural and thermal stability of collagen within parchment: a mesoscopic and molecular approach. In: Larsen R, editor. Improved Damage Assessment of Parchment (IDAP) Collection and Sharing of Knowledge (Research Report No 18). EU-Directorate-General for Research; 2007. p. 89–98.

  11. Buehler MJ. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci USA. 2006;103(33):12285–90.

    Article  CAS  Google Scholar 

  12. Wess TJ. Collagen fibrillar structures and hierarchies. In: Fratzl P, editor. Collagen: structure and mechanics. New York: Springer; 2008. p. 49–80.

  13. Wess TJ, Drakopoulos M, Snigirev A, Wouters J, Paris O, Fratzl P, Collins M, Hiller J, Nielsen K. The use of small-angle X-ray diffraction studies for the analysis of structural features in archaeological samples. Archaeometry. 2001;43:117–29.

    Article  CAS  Google Scholar 

  14. Popescu C, Budrugeac P, Wortmann FJ, Miu L, Demco D, Baias M. Assessment of collagen-based materials which are supports of cultural and historical objects. Polym Degrad Stab. 2008;93:976–82.

    Article  CAS  Google Scholar 

  15. Budrugeac P, Badea E, Della Gatta G, Miu L, Comănescu A. DSC study of deterioration of parchment exposed to environmental chemical pollutants (SO2, NOx). Thermochim Acta. 2010;500:51–62.

    Article  CAS  Google Scholar 

  16. Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76(6):3243–52.

    Article  CAS  Google Scholar 

  17. Della Gatta G, Richardson MJ, Sarge SM, Stølen S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC Technical Report). Pure Appl Chem. 2006;78:1455–76.

    Article  CAS  Google Scholar 

  18. Makhatadze GI, Privalov PL. Energetics of protein structure. Adv Protein Chem. 1995;47:307–425.

    Article  CAS  Google Scholar 

  19. Komsa-Penkova R, Koynova R, Kostov G, Tenchov BG. Thermal stability of calf skin collagen type I in salt solutions. Biochim Biophys Acta. 1996;1297:171–81.

    Article  Google Scholar 

  20. Burdzhanadze TV, Metreveli NO, Mdzinarashvili TD, Mrevlishvili GM. Calorimetric investigation of the thermodynamic parameters of denaturing of collagen in dilute solutions at different scanning rates. Biophysics. 1997;42:77–9.

    Google Scholar 

  21. Brandts JF. The thermodynamics of protein denaturation. In: Timasheff N, Fasman G, editors. Structure and stability of biological macromolecules. New York: Marcel Dekker Inc.; 1969. p. 213–223.

  22. Privalov PL. Stability of Proteins: proteins which do not present a single cooperative system. Adv Protein Chem. 1982;35:1–104.

    Article  CAS  Google Scholar 

  23. Le Lous M, Flandin F, Herbage D, Allain JC. A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim Biophys Acta. 1982;717:205–11.

    Google Scholar 

  24. Kopp J, Bonnet M, Renou JP. Effect of collagen crosslinking on collagen-water interactions (a DSC investigation). Matrix. 1989;9:443–50.

    CAS  Google Scholar 

  25. Larsen R, Poulsen DV, Juchauld F, Jerosch H, Odlyha M, De Groot J, Wess T, Kennedy C, Della Gatta G, Badea E, Mašić A, Boghosian S, Fessas D. Damage assessment of parchment: complexity and relations at different structural levels. In: 14th ICOM-CC Preprints, vol. 1. James & James/Earthscan; 2005. p. 199–208.

  26. Della Gatta G, Badea E, Saczuk M, Odlyha M, Larsen R. Sustainable preservation of historical parchments. La Chimica e l’Industria. 2010;4:106–11.

    Google Scholar 

  27. Badea E, Mašić A, Miu L, Laurora C, Braghieri A, Coluccia S, Della Gatta G. Protocolli chimico-fisici per la valutazione del deterioramento ambientale di pergamene antiche. In: Lo Stato dell’Arte 5. Nardini Editore; 2007. p. 101–108.

  28. Badea E, Miu L, Budrugeac P, Giurginca M, Mašić A, Badea N, Della Gatta G. Study of deterioration of historical parchments by various thermal analysis techniques complemented by SEM, FTIR, UV–Vis–NIR and unilateral NMR investigations. J Therm Anal Calorim. 2008;91:17–27.

    Article  CAS  Google Scholar 

  29. Nguyen AL, Vu BT, Wilkes GL. The dynamic mechanical, dielectric and melting behaviour of reconstructed collagen. Biopolymers. 1974;13:1023–30.

    Article  CAS  Google Scholar 

  30. Samoillan V, Dandrirand-Lods J, Lamure A, Maurel E, Lacabanne C, Gerosa G, Venturini A, Casarotto D, Gherardini L, Spina M. Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J Biomed Mater Res. 1999;46:531–8.

    Article  Google Scholar 

  31. Pietrucha K. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies. Intern J Biol Macromol. 2005;36:299–304.

    Article  CAS  Google Scholar 

  32. Kennedy CJ, Hiller JC, Lammie D, Drakopoulos M, Vest M, Cooper M, Adderley WP, Wess TJ. Microfocus X-ray diffraction of historical parchment reveals variations in structural features through parchment cross sections. Nano Lett. 2004;4(8):1373–80.

    Article  CAS  Google Scholar 

  33. Williams JMV. IULTCS (IUP) test methods. J Soc Leather Technol Chem. 2000;84:359–62.

    Google Scholar 

  34. Larsen R. Experiments and observations in the study of environmental impact on historical vegetable tanned leathers. Thermochim Acta. 2000;365:85–99.

    Article  CAS  Google Scholar 

  35. Witnauer LP, Wisnewski AJ. Absolute measurement of shrinkage temperature by differential thermal analysis. J Am Leather Assoc. 1964;59:598–612.

    CAS  Google Scholar 

  36. Chahine C. Acid deterioration of vegetable tanned leather. In: Calcan C, Haines B, editors. Leather, its composition and changes with time. Northampton: The Leather Conservation Centre; 1991. p. 75–87.

  37. Chahine C, Rottier C. Changes in thermal stability during artificial ageing with pollutants: a DSC study. In: Postprints of the ICOM leather & related objects group Interim Symposium. London; 1992. p. 6–10.

  38. Budrugeac P, Miu L. Effect of accelerated thermal ageing on the thermal behaviour of the recently made parchments. J Therm Anal Calorim. 2008;94:342–55.

    Article  Google Scholar 

  39. Budrugeac P, Miu L, Soukova M. The damage in the patrimonial books from Romanian libraries. Thermal analysis methods and scanning electron microscopy. J Therm Anal Calorim. 2007;88:693–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the European Union Fifth Framework project EVK4-2001-00067: Improved Damage Assessment of Parchment (IDAP), Italian project CIPE 04 D39: Old Parchment: Evaluating Restoration and Analysis (OPERA) and Romanian National Authority for Scientific Research project CEEX 165: Multidisciplinary research for establishing the deterioration mechanisms of historical and cultural parchment documents (PERGAMO). The enthusiastic collaboration of Cecilia Laurora, Rosetta Granziero, Marzia Rizzo and Battista Pittari (State Archives of Turin), Anna Braghieri and Stefano Benedetto (Historical Archives of the City of Turin), Silvia Perona and Paola Novaria (Historical Archives of the University of Turin) is warmly acknowledged. Authors are grateful to Dr. Lucretia Miu (INCDTP-ICPI, Bucharest) for the measurement of shrinkage temperatures by MHT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Della Gatta.

Additional information

Elena Badea—On leave from the Faculty of Chemistry, University of Craiova, Calea Bucuresti 165, Craiova, 200585, Romania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badea, E., Della Gatta, G. & Budrugeac, P. Characterisation and evaluation of the environmental impact on historical parchments by differential scanning calorimetry. J Therm Anal Calorim 104, 495–506 (2011). https://doi.org/10.1007/s10973-011-1495-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1495-8

Keywords

Navigation