Skip to main content
Log in

Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We have investigated the effect of titanium dioxide as a durable finish on the flammability and photocatalytic self-cleaning of cellulosic fabric. Nano-sized titanium dioxide particles were successfully synthesized and deposited onto cellulosic fibers with good compatibility, significant photocatalytic self-cleaning activity, and flame-retardancy properties using the sol–gel process at low temperature. The photocatalytic activity was tested by measuring the photodegradation of methylene blue under ultraviolet–visible illumination, and also flame-retardancy effect was tested by flammability tester. The samples have been characterized by several techniques such as scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy, X-ray diffraction, and thermogravimetric analysis. The titanium dioxide nanoparticles with 10–20 nm in size have been found to form a homogeneous thin film on the fiber surface which shows efficient photocatalytic and flame-retardancy properties. This preparation technique can also be applied to new fabrics to create self-cleaning and flame-retardancy properties in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lewin M. Unsolved problems and unanswered questions in flame retardance of polymers. Polym Degrad Stab. 2005;88:13–9.

    Article  CAS  Google Scholar 

  2. Fujishima A, Hashimoto K, Watanabe T. Photocatalysis, fundamental and applications. Tokyo: BKC Inc; 1999.

  3. Mills A, Lee SK. A web-based overview of semiconductor photochemistry-based current commercial applications. J Photochem Photobiol A. 2002;152:233–49.

    Article  CAS  Google Scholar 

  4. Cui H, Shen HS, Gao YM, Dwight K, Wold A. Photocatalytic properties of titanium(IV) oxide thin films prepared by spin coating and spray pyrolysis. Mater Res Bull. 1993;28:195–201.

    Article  CAS  Google Scholar 

  5. Gao M, Shen HS, Dwight K, Wold A. Preparation and photocatalytic properties of titanium(IV) oxide films. Mater Res Bull. 1992;27:1023–30.

    Article  CAS  Google Scholar 

  6. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films. 1999;351:260–3.

    Article  CAS  Google Scholar 

  7. Ao CH, Lee SC. Indoor air purification by photocatalyst TiO2 immobilized on activated carbon filter an installed in an air cleaner. Chem Eng Sci. 2005;60:103–9.

    Article  CAS  Google Scholar 

  8. Nonami T, Hase H, Funakoshi K. Apatite-coated titanium dioxide photocatalyst for air purification. Catal Today. 2004;96:113–8.

    Article  CAS  Google Scholar 

  9. Parra S, Elena SS, Guasaquillo I, Ravindranathan TK. Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B Environ. 2004;51:107–16.

    Article  CAS  Google Scholar 

  10. Chen XB, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–959.

    Article  CAS  Google Scholar 

  11. Li PG, Khor JN, Brucato A. Modeling of an annular photocatalytic reactor for water purification: oxidation of pesticides. Environ Sci Technol. 2004;38:3737–45.

    Article  Google Scholar 

  12. Kamat PV, Huehn R, Nicolaescu RA. “Sense and Shoot” approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B. 2002;106:788–94.

    Article  CAS  Google Scholar 

  13. Litter MI. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B Environ. 1999;23:89–114.

    Article  CAS  Google Scholar 

  14. Dhananjeyan M, Mielczarski E, Thampi K, Buffat P, Bensimon M, Kulik A, Mielczarski J, Kiwi J. Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. J Phys Chem B. 2001;105:12046–55.

    Article  CAS  Google Scholar 

  15. Daoud WA, Xin JH, Zhang YH. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf Sci. 2005;599:69–75.

    Article  CAS  Google Scholar 

  16. Daoud WA, Xin JH. Low temperature sol–gel processed photocatalytic titania coating. J Sol-Gel Sci Technol. 2004;29:25–9.

    Article  CAS  Google Scholar 

  17. Daoud WA, Xin JH. Synthesis of single-phase anatase nanocrystallites at near room temperatures. Chem Commun. 2005;16:2110–2.

    Article  Google Scholar 

  18. Bozzi A, Yuranova T, Kiwi J. Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J Photochem Photobiol A. 2005;172:27–34.

    Article  CAS  Google Scholar 

  19. Bozzi A, Yuranova T, Kiwi J. Self-cleaning of cotton textiles modified with TiO2 at low temperatures under daylight irradiation. J Photochem Photobiol A. 2005;174:156–64.

    Article  CAS  Google Scholar 

  20. Meilert KT, Laub D, Kiwi J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers. J Mol Catal A. 2005;237:101–3.

    Article  CAS  Google Scholar 

  21. Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J. Self-cleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating. J Mol Catal A. 2006;224:160–7.

    Google Scholar 

  22. Qi K, Daoud WA, Xin JH, Mak CL, Tang WS, Cheung WP. Self-cleaning cotton. J Mater Chem. 2006;16:4567–74.

    Article  CAS  Google Scholar 

  23. Daoud WA, Xin JH. Nucleation and growth of anatase crystallites on cotton fabrics at low temperature. J Am Ceram Soc. 2004;87:953–5.

    Article  CAS  Google Scholar 

  24. Daoud WA, Xin JH, Zhang YH, Qi KH. Surface characterization of thin titania films prepared at low temperatures. J Non-Cryst Solids. 2005;351:1486–90.

    Article  CAS  Google Scholar 

  25. Wu D, Long M, Zhou J, Cai W, Zhu X, Chen C, Wu Y. Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surf Coat Technol. 2009;203:3728–33.

    Article  CAS  Google Scholar 

  26. Mejia MI, Marin JM, Restrepo G, Pulgarin C, Mielczarski E, Mielczarski J, Arroyo Y, Lavanchy JC, Kiwi J. Self-cleaning modified TiO2-cotton pretreated by UVC-light (185 nm) and RF-plasma in vacuum and also under atmospheric pressure. Appl Catal B. 2009;91:481–8.

    Article  CAS  Google Scholar 

  27. U.S. Department of Commerce Standard for Flammability of Children’s Sleepwear (DOC.FF 3-71), Federal Register 36, No. 146, July 19; 1971.

  28. Mostashari SM, Moafi HF. Thermal decomposition pathway of a cellulosic fabric impregnated by magnesium chloride hexahydrate as a flame-retardant. J Therm Anal Calorim. 2008;93:589–94.

    Article  CAS  Google Scholar 

  29. Mostashari SM, Moafi HF, Mostashari SZ. TG comparison between the efficiency of deposited ammonium bromide and ammonium chloride on the flame-retardancy imparted to cotton fabric. J Therm Anal Calorim. 2009;96:535–40.

    Article  CAS  Google Scholar 

  30. Mostashari SM, Mostashari SZ. Combustion pathway of cotton fabrics treated by ammonium sulfate as a flame-retardant studied by TG. J Therm Anal Calorim. 2008;91:437–41.

    Article  CAS  Google Scholar 

  31. Mostashari SM, Kamali Nia Y. Detection of copper(II) sulfate’s uniformity and its thermal behavior in flammability of cotton fabric spectrophotometric and TG analysis. J Therm Anal Calorim. 2008;92:489–93.

    Article  CAS  Google Scholar 

  32. Mostashari SM, Fayyaz F. TG of a cotton fabric impregnated by sodium borate decahydrate (Na2B4O7·10H2O) as a flame-retardant. J Therm Anal Calorim. 2008;93:933–6.

    Article  CAS  Google Scholar 

  33. Mostashari SM, Mostashari SZ. Thermogravimetric analysis of a cotton fabric incorporated by ‘Graham’s salt’ applied as a flame-retardant. J Therm Anal Calorim. 2009;95:187–92.

    Article  CAS  Google Scholar 

  34. Mostashari SM, Kamali Nia Y, Fayyaz F. Thermogravimetry of deposited caustic soda used as a flame-retardant for cotton fabric. J Therm Anal Calorim. 2008;91:237–41.

    Article  CAS  Google Scholar 

  35. Mostashari SM, Baie S. Thermogravimetry studies of cotton fabric’s flame-retardancy by means of synergism of lithium bromide and antimony trioxide. J Therm Anal Calorim. 2008;94:97–101.

    Article  CAS  Google Scholar 

  36. Mostashari SM, Fayyaz F. XRD characterization of the ashes from a burned cellulosic fabric impregnated with magnesium bromide hexahydrate as flame-retardant. J Therm Anal Calorim. 2008;92:845–9.

    Article  CAS  Google Scholar 

  37. Mostashari SM, Moafi HF. Flame-retardancy of a cellulosic fabric by the application of synergistic effect between ammonium bromide and antimony (III) oxide. Chin J Chem. 2009;27:1–10.

    Article  Google Scholar 

  38. Mostashari SM, Kamali Nia Y, Moafi HF. Comparison between the selected hydroxides of groups IA and IIA as flame retardants for cotton fabrics. Combust Explos Shock. 2007;43:194–7.

    Article  Google Scholar 

  39. Moharram MA, Nasr TZAE, Hakeem NA. X-ray diffraction and infrared studies on the effect of thermal treatments on cotton celluloses. J Polym Sci Polym Lett Ed. 1981;19:183–7.

    Article  CAS  Google Scholar 

  40. Zhu P, Sui S, Wang B, Sun K, Sun G. A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J Anal Appl Pyrolysis. 2004;71:645–55.

    Article  CAS  Google Scholar 

  41. Jolles ZE, Jolles GI. Some notes on flame-retardant mechanisms in polymers. Plast Polym. 1972;40:319.

    CAS  Google Scholar 

  42. Sandola F, Balzani V. Preparation and characterization of semi conductors. In: Serpone N, Pelizzetti E, editors. Photocatalysis—fundamentals and applications. New York: John Wiley & Sons; 1989. p. 9–44.

  43. Kutsuna S, Toma M, Takeuchi K, Ibusuki T. Photocatalytic degradation of some methyl perfluoroalkyl ethers on TiO2 particles in air: the dependence on the dark-adsorption, the products, and the implication for a possible tropospheric sink. Environ Sci Technol. 1999;33:1071–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Guilan for financial assistance of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Fallah Shojaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moafi, H.F., Shojaie, A.F. & Zanjanchi, M.A. Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide. J Therm Anal Calorim 104, 717–724 (2011). https://doi.org/10.1007/s10973-010-1133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1133-x

Keywords

Navigation