Skip to main content
Log in

New incremental isoconversional method for kinetic analysis of solid thermal decomposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A simple and precise incremental isoconversional integral method based on Li-Tang (LT) method is proposed for kinetic analysis of solid thermal decomposition, in order to evaluate the activation energy as a function of conversion degree. The new method overcomes the limitation of LT method in which the calculated activation energy is influenced by the lower limit of integration. By applying the new method to kinetic analysis of both the simulated nonisothermal case and experimental case of strontium carbonate thermal decomposition, it is shown that the dependence of activation energy on conversion degree evaluated by the new method is consistent with those obtained by Friedman (FR) method and the modified Vyazovkin method. As the new method is free from approximating the temperature integral and not sensitive to the noise of the kinetic data, it is believed to be more convenient in nonisothermal kinetic analysis of solid decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim. 2009;98(1):325–30.

    Article  CAS  Google Scholar 

  2. Maitra S, et al. Non-isothermal decomposition kinetics of alkaline earth metal carbonates. J Am Ceram Soc. 2007;90(4):1299–303.

    Article  CAS  Google Scholar 

  3. Kaljuvee T, et al. Heating rate effect on the thermal behavior of ammonium nitrate and its blends with limestone and dolomite. J Therm Anal Calorim. 2009;97(1):215–21.

    Article  CAS  Google Scholar 

  4. Boonchom B. Kinetic and thermodynamic studies of MgHPO4 center dot A 3H(2)O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98(3):863–71.

    Article  CAS  Google Scholar 

  5. Ferriol M, et al. Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab. 2003;79(2):271–81.

    Article  CAS  Google Scholar 

  6. Burnham AK. Computational aspects of kinetic analysis. Part D: the ICTAC kinetics project—multi-thermal-history model-fitting methods and their relation to isoconversional methods. Thermochim Acta. 2000;355(1–2):165–70.

    Article  CAS  Google Scholar 

  7. Roduit B. Computational aspects of kinetic analysis. Part E: the ICTAC Kinetics Project—numerical techniques and kinetics of solid state processes. Thermochim Acta. 2000;355(1–2):171–80.

    Article  CAS  Google Scholar 

  8. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28(2):95–101.

    Article  CAS  Google Scholar 

  9. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: In search of ways toward consensus. J Phys Chem A. 1997;101(44):8279–84.

    Article  CAS  Google Scholar 

  10. Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim Acta. 2000;355(1–2):155–63.

    Article  CAS  Google Scholar 

  11. Chen HX, Liu NA. Approximation expressions for the temperature integral. Prog Chem. 2008;20(7–8):1015–20.

    CAS  Google Scholar 

  12. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  13. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B: Polym Lett. 1966;4(5):323–8.

    Article  CAS  Google Scholar 

  14. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–9.

    Article  CAS  Google Scholar 

  15. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal Calorim. 1977;11(3):445–7.

    Article  Google Scholar 

  16. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6(24):639–42.

    Article  CAS  Google Scholar 

  17. Chen HX, Liu N, Shu LF. Error of kinetic parameters for one type of integral method for thermogravimetric measurements. Polym Degrad Stab. 2005;90(1):132–5.

    Article  CAS  Google Scholar 

  18. Li C-R, Tang TB. Dynamic thermal analysis of solid-state reactions. J Therm Anal Calorim. 1997;49(3):1243–8.

    Article  CAS  Google Scholar 

  19. Li CR, Tang TB. Isoconversion method for kinetic analysis of solid-state reactions from dynamic thermoanalytical data. J Mater Sci. 1999;34(14):3467–70.

    Article  CAS  Google Scholar 

  20. Li C-R, Tang TB. A new method for analysing non-isothermal thermoanalytical data from solid-state reactions. Thermochim Acta. 1999;325(1):43–6.

    Article  CAS  Google Scholar 

  21. Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry-application to a phenolic resin. J Polym Sci Part C: Polum Lett. 1964;6:183–95.

    Article  Google Scholar 

  22. Budrugeac P, Segal E. On the Li and Tang’s isoconversional method for kinetic analysis of solid-state reactions from thermoanalytical data. J Mater Sci. 2001;36(11):2707–10.

    Article  CAS  Google Scholar 

  23. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22(2):178–83.

    Article  CAS  Google Scholar 

  24. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474(1–2):81–6.

    Article  CAS  Google Scholar 

  25. Wanjun T, Donghua C. An integral method to determine variation in activation energy with extent of conversion. Thermochim Acta. 2005;433(1–2):72–6.

    Article  Google Scholar 

  26. Budrugeac P, Segal E. On the nonlinear isoconversional procedures to evaluate the activation energy of nonisothermal reactions in solids. Int J Chem Kinet. 2004;36(2):87–93.

    Article  CAS  Google Scholar 

  27. Budrugeac P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68(1):131–9.

    Article  CAS  Google Scholar 

  28. Vyazovkin S. Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature. J Comput Chem. 1997;18(3):393–402.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by National Natural Science Foundation of China under Grant 50806070 and 51076148, and the R&D Special Fund for Public Welfare Industry (forestry, 200704027). Liu Naian was supported by the Fok Ying Tung Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Chen, H. & Liu, N. New incremental isoconversional method for kinetic analysis of solid thermal decomposition. J Therm Anal Calorim 104, 679–683 (2011). https://doi.org/10.1007/s10973-010-1029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1029-9

Keywords

Navigation