Skip to main content
Log in

Synthesis and ultrafast humidity sensing performance of Sr doped ZnO nanostructured thin films: the effect of Sr concentration

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, the effect of strontium (Sr) concentration on the ultrafast humidity sensing performance of Sr doped zinc oxide (SrxZn1–xO) nanostructured thin films was reported. The sol gel method was used in the synthesis of undoped zinc oxide (ZnO) and SrxZn1–xO (x = 0.01, 0.02, 0.03, 0.04, and 0.10) nanoparticles. According to the x-ray diffraction analysis, all films had a hexagonal wurtzite structure. By doping Sr into the ZnO lattice, the preferential orientation changed from the (002) plane to the (101) plane. Scanning electron microscopy micrographs showed that all films had a structure containing nanosized grains and capillary-nanopores, and the nanosized grains were homogeneously and uniformly distributed on the surface of films. The presence of zinc, oxygen and Sr elements in nanostructured thin films was proved by energy dispersive x-ray spectra. The relative humidity sensing performances of undoped ZnO and SrxZn1–xO films were tested with electrical resistance measurements in the range of 40–90% RH at room temperature. SrxZn1–xO films had high sensitivity, excellent stability, reliable and reproducible character, and fast response and recovery times. Sr0.10Zn0.90O was accepted as the best sample in terms of having the highest humidity sensitivity (657.59x) and the fastest response (0.8 s) and recovery (9.8 s) times. This study clearly revealed that SrxZn1–xO nanostructured thin films have great potential for high performance humidity sensor applications due to their ultrafast humidity sensing performance.

Graphical Abstract

Ultrafast humidity sensing performance of Sr doped ZnO nanostructured thin films fabricated by sol gel spin coating method. In the graphical abstract, the synthesis of Sr doped ZnO nanoparticles by sol gel method, coating on glass substrates by spin coating method, annealing in box furnace, Al coating in thermal evaporator for electrical contacts, fabricated sensor and important humidity sensor characteristics are emphasized. In addition, a schematic representation of the experimental setup used in humidity sensor performance measurements is also given. Graphical Abstract is designed in three parts. Section A: Synthesis and sensor fabrication. Section B: Experimental setup scheme. Section C: Humidity sensor performance. Section A: Synthesis and sensor fabrication. (Synthesis of Sr doped ZnO nanoparticles by sol gel method, coating on glass substrates by spin coating method, annealing in box furnace, Al coating in thermal evaporator for electrical contacts and fabricated sensor). Section B: Experimental setup scheme. (Schematic representation of the experimental setup used in humidity sensor performance measurements). Section C: Humidity sensor performance. (The humidity sensitivities of the fabricated Sr doped ZnO humidity sensors, good repeatability of measurements, the best response and recovery times determined from performance measurements, and excellent stability of sensors).

Highlights

  • Sol–gel method to synthesize Sr-doped ZnO nanoparticles.

  • For RH-sensing performances, electrical resistance changes depending on %RH.

  • Structural, morphological and elemental analyses with XRD, SEM and EDS.

  • High-humidity sensitivity of 657.59x with Sr doping into ZnO.

  • Ultra-fast response (0.8 s) and recovery (9.8 s) times with Sr doping into ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gu W, Zhang H, Chen C, Zhang J (2022) Study on the design of ZnO/PANI composites and the mechanism of enhanced humidity sensing properties. Curr Appl Phys 34:112–121. https://doi.org/10.1016/j.cap.2021.11.013

    Article  Google Scholar 

  2. Derby MM, Hamehkasi M, Eckels S et al. (2017) Update of the scientific evidence for specifying lower limit relative humidity levels for comfort, health, and indoor environmental quality in occupied spaces (RP-1630). Sci Technol Built Environ 23:30–45. https://doi.org/10.1080/23744731.2016.1206430

    Article  Google Scholar 

  3. Subki ASR, Mamat MH, Manut A et al. (2022) Composite effect on zinc oxide based resistive type humidity sensor performance: a preliminary assessment. J Electr Electron Syst Res 20:18–28. https://doi.org/10.24191/jeesr.v20i1.003

    Article  Google Scholar 

  4. Wang J, Zeng W (2022) Research progress on humidity-sensing properties of cu-based humidity sensors: a review. J Sensors (2022) https://doi.org/10.1155/2022/7749890

  5. Niranjan RS, Sathaye SD, Mulla IS (2001) Bilayered tin oxide: Zirconia thin film as a humidity sensor. Sensors Actuators. B Chem 81:64–67. https://doi.org/10.1016/S0925-4005(01)00932-7

    Article  CAS  Google Scholar 

  6. Joseph J, Pradeep N, Vadgama VS et al. (2021) Humidity sensing properties of Hierarchical Fe Doped SnO2 Nanocoral-like structures. J Electron Mater 50:3949–3961. https://doi.org/10.1007/s11664-021-08911-x

    Article  CAS  Google Scholar 

  7. Dubey RS, Srilali S, Ravikiran YT et al. (2022) Synthesis and characterization of Znx-1Al2O4(TiO2)x nanocomposite ceramics and their humidity sensing properties. J Mater Sci 57:2636–2649. https://doi.org/10.1007/s10853-021-06709-0

    Article  CAS  Google Scholar 

  8. Sikarwar S, Yadav BC, Singh S et al. (2016) Fabrication of nanostructured yttria stabilized zirconia multilayered films and their optical humidity sensing capabilities based on transmission. Sens Actuators, B Chem 232:283–291. https://doi.org/10.1016/j.snb.2016.03.080

    Article  CAS  Google Scholar 

  9. Biju KP, Jain MK (2008) Sol-gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application. Sensors Actuators. B Chem 128:407–413. https://doi.org/10.1016/j.snb.2007.06.029

    Article  CAS  Google Scholar 

  10. Sathya PS (2020) Design and development of thin film humidity sensor based on alumina and zirconium dioxide. Int Conf Emerg Trends Inf Technol Eng ic-ETITE 2020:1–5. https://doi.org/10.1109/ic-ETITE47903.2020.270

    Article  Google Scholar 

  11. Wang J, Su MY, Qi JQ, Chang LQ (2009) Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors. Sens Actuators, B Chem 139:418–424. https://doi.org/10.1016/j.snb.2009.03.070

    Article  CAS  Google Scholar 

  12. Wang C, Wang Y (2016) The Control of Sensing Properties for Sm2O3-ZrO2 Humidity Sensor. 873–877. https://doi.org/10.2991/emim-16.2016.179

  13. Xu L, Xiao S, Zhang C et al. (2014) Optical and structural properties of Sr-doped ZnO thin films. Mater Chem Phys 148:720–726. https://doi.org/10.1016/j.matchemphys.2014.08.040

    Article  CAS  Google Scholar 

  14. Patil U, Khandare L, Late DJ (2022) High performance humidity sensor based on crystalline copper tungstate nanoparticles at room temperature. Mater Sci Eng B Solid-State Mater Adv Technol 284:115874. https://doi.org/10.1016/j.mseb.2022.115874

    Article  CAS  Google Scholar 

  15. Zheng KO, Rosli N, Mohd Rashid MM, Halim MM (2023) Influence of copper contact thickness on Cu/ZnO nanorods-enhanced Schottky diode. Phys B Condens Matter 648:414425. https://doi.org/10.1016/j.physb.2022.414425

    Article  CAS  Google Scholar 

  16. Shirvani M, Naji L (2023) Comparative study on the electrochemical synthesis of zinc oxide nanorods using chronoamperometry and chronopotentiometry and their application in inverted polymer solar cells. Colloids Surf A Physicochem Eng Asp 660:130889. https://doi.org/10.1016/j.colsurfa.2022.130889

    Article  CAS  Google Scholar 

  17. Mirzaei A, Ansari HR, Shahbaz M, et al. (2022) Metal oxide semiconductor nanostructure gas sensors with different morphologies. Chemosensors 10. https://doi.org/10.3390/chemosensors10070289

  18. Zhang M, Zhang H, Li L et al. (2018) Er-enhanced humidity sensing performance in black ZnO-based sensor. J Alloy Compd 744:364–369. https://doi.org/10.1016/j.jallcom.2018.02.109

    Article  CAS  Google Scholar 

  19. Chang SP, Chang SJ, Lu CY et al. (2010) A ZnO nanowire-based humidity sensor. Superlattices Microstruct 47:772–778. https://doi.org/10.1016/j.spmi.2010.03.006

    Article  CAS  Google Scholar 

  20. Lin C, Zhang H, Zhang J, Chen C (2019) Enhancement of the humidity sensing performance in Mg-doped hexagonal ZnO microspheres at room temperature. Sensors (Switzerland) 19. https://doi.org/10.3390/s19030519

  21. Yu S, Zhang H, Lin C, Bian M (2019) The enhancement of humidity sensing performance based on Eu-doped ZnO. Curr Appl Phys 19:82–88. https://doi.org/10.1016/j.cap.2018.11.015

    Article  Google Scholar 

  22. Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review

  23. Vijaya JJ, Kennedy LJ, Sekaran G et al. (2007) Effect of Sr addition on the humidity sensing properties of CoAl2O4 composites. Sens Actuators, B Chem 123:211–217. https://doi.org/10.1016/j.snb.2006.08.011

    Article  CAS  Google Scholar 

  24. Vijaya JJ, Kennedy LJ, Meenakshisundaram A et al. (2007) Humidity sensing characteristics of sol-gel derived Sr(II)-added ZnAl2O4 composites. Sensors Actuators. B Chem 127:619–624. https://doi.org/10.1016/j.snb.2007.05.021

    Article  CAS  Google Scholar 

  25. Vijaya JJ, Kennedy LJ, Sekaran G, Nagaraja KS (2007) Synthesis, characterization and humidity sensing properties of Sr(II)-added BaAl2O4 composites. Sens Actuators, B Chem 124:542–548. https://doi.org/10.1016/j.snb.2007.01.018

    Article  CAS  Google Scholar 

  26. Fu Lin C, Haur Kao C, Yu Lin C et al. (2020) The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte–insulator–semiconductor) for glucose sensing applications. Results Phys 16:102976. https://doi.org/10.1016/j.rinp.2020.102976

    Article  Google Scholar 

  27. Suwanboon S, Somraksa W, Amornpitoksuk P, Randorn C (2020) Effect of trisodium citrate on the formation and structural, optical and photocatalytic properties of Sr-doped ZnO. J Alloy Compd 832:154963. https://doi.org/10.1016/j.jallcom.2020.154963

    Article  CAS  Google Scholar 

  28. Yarahmadi M, Maleki-Ghaleh H, Mehr ME et al. (2021) Synthesis and characterization of Sr-doped ZnO nanoparticles for photocatalytic applications. J Alloy Compd 853:157000. https://doi.org/10.1016/j.jallcom.2020.157000

    Article  CAS  Google Scholar 

  29. Mahmood A, Tezcan F, Kardaş G, Karadaǧ F (2017) Effect of Sr doping on the electronic band structure and optical properties of ZnO: a first principle calculation. J Appl Phys 122. https://doi.org/10.1063/1.5002075

  30. Ansari ZA, Ko TG, Oh JH (2004) Humidity sensing behavior of thick films of strontium-doped lead-zirconium-titanate. Surf Coat Technol 179:182–187. https://doi.org/10.1016/S0257-8972(03)00820-X

    Article  CAS  Google Scholar 

  31. Vijaya JJ, Kennedy LJ, Sekaran G, Nagaraja KS (2008) Synthesis, characterization and humidity sensing properties of Cu-Sr-Al mixed metal oxide composites. Mater Res Bull 43:473–482. https://doi.org/10.1016/j.materresbull.2007.02.030

    Article  CAS  Google Scholar 

  32. Shah Z, Shaheen K, Arshad T et al. (2022) Al doped Sr and Cd metal oxide nanomaterials for resistive response of humidity sensing. Mater Chem Phys 290:126632. https://doi.org/10.1016/j.matchemphys.2022.126632

    Article  CAS  Google Scholar 

  33. Akshata G, Sangeetha, Dhanush, Acharya S (2022) Synthesis and characterization of undoped and strontium doped ZnO thin films. Mater Today Proc 55:109–112. https://doi.org/10.1016/j.matpr.2021.12.403

  34. Li JC, Wang Y, Ba DC (2012) Characterization of semiconductor surface conductivity by using microscopic four-point probe technique. Phys Procedia 32:347–355. https://doi.org/10.1016/j.phpro.2012.03.568

    Article  CAS  Google Scholar 

  35. Naftaly M, Das S, Gallop J, et al. (2021) Sheet resistance measurements of conductive thin films: a comparison of techniques. Electron 10. https://doi.org/10.3390/electronics10080960

  36. Priyadharshini B, Valsalal P (2022) An improved humidity sensor with GO‐Mn‐Doped ZnO nanocomposite and dimensional orchestration of comb electrode for effective bulk manufacturing. Nanomaterials 12. https://doi.org/10.3390/nano12101659

  37. Wei XQ, Man BY, Liu M et al. (2007) Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys B Condens Matter 388:145–152. https://doi.org/10.1016/j.physb.2006.05.346

    Article  CAS  Google Scholar 

  38. Usha KS, Sivakumar R, Sanjeeviraja C, Vivekanandan J (2022) Effect of substrate temperatures on structural, optical and dispersion energy parameters of RF sputtered nickel oxide thin films. Mater Chem Phys 294:127007. https://doi.org/10.1016/j.matchemphys.2022.127007

    Article  CAS  Google Scholar 

  39. Choi BG, Kim IH, Kim DH et al. (2005) Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter. J Eur Ceram Soc 25:2161–2165. https://doi.org/10.1016/j.jeurceramsoc.2005.03.023

    Article  CAS  Google Scholar 

  40. Kim MS, Kim TH, Kim DY et al. (2009) Improvement in crystallinity and optical properties of ZnO epitaxial layers by thermal annealed ZnO buffer layers with oxygen plasma. J Cryst Growth 311:3568–3572. https://doi.org/10.1016/j.jcrysgro.2009.05.010

    Article  CAS  Google Scholar 

  41. Yang Y, Liang J, Zhang Z, et al. (2022) Suppressing residual lead iodide and defects in sequential-deposited perovskite solar cell via bidentate potassium dichloroacetate ligand. Chem Sus Chem 15. https://doi.org/10.1002/cssc.202102474

  42. Ouhaibi A, Ghamnia M, Dahamni MA et al. (2018) The effect of strontium doping on structural and morphological properties of ZnO nanofilms synthesized by ultrasonic spray pyrolysis method. J Sci Adv Mater Devices 3:29–36. https://doi.org/10.1016/j.jsamd.2018.01.004

    Article  Google Scholar 

  43. Hashim NH, Subramani S, Devarajan M, Ibrahim AR (2017) Properties of undoped ZnO and Mg doped ZnO thin films by sol-gel method for optoelectronic applications. J Aust Ceram Soc 53:421–431. https://doi.org/10.1007/s41779-017-0051-9

    Article  CAS  Google Scholar 

  44. Yousefi R, Jamali-Sheini F, Cheraghizade M et al. (2015) Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater Sci Semicond Process 32:152–159. https://doi.org/10.1016/j.mssp.2015.01.013

    Article  CAS  Google Scholar 

  45. Kuo SY, Chen WC, Lai FI et al. (2006) Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J Cryst Growth 287:78–84. https://doi.org/10.1016/j.jcrysgro.2005.10.047

    Article  CAS  Google Scholar 

  46. Kang KM, Wang Y, Kim M et al. (2021) Al/F codoping effect on the structural, electrical, and optical properties of ZnO films grown via atomic layer deposition. Appl Surf Sci 535:147734. https://doi.org/10.1016/j.apsusc.2020.147734

    Article  CAS  Google Scholar 

  47. Wang Y, Tang W, Zhang L (2015) Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J Mater Sci Technol 31:175–181. https://doi.org/10.1016/j.jmst.2014.11.009

    Article  CAS  Google Scholar 

  48. Onuegbu SC, Oluyamo SS, Olusola OI (2022) A review on microstructural, optical, electrical and gas sensing properties of aluminum-doped zinc oxide thin films for gas sensing and optoelectronic applications. 1:28–48

  49. Chen S, Carraro G, Barreca D, Binions R (2015) Growth and electro-optical properties of Ga-doped ZnO films prepared by aerosol assisted chemical vapour deposition. Thin Solid Films 584:316–319. https://doi.org/10.1016/j.tsf.2014.11.092

    Article  CAS  Google Scholar 

  50. Agashe C, Hüpkes J, Schöpe G, Berginski M (2009) Physical properties of highly oriented spray-deposited fluorine-doped tin dioxide films as transparent conductor. Sol Energy Mater Sol Cells 93:1256–1262. https://doi.org/10.1016/j.solmat.2009.01.021

    Article  CAS  Google Scholar 

  51. Lu Q, Gao M, Lu C et al. (2021) Role of seed layer in van der Waals growth of vanadium dioxide film on mica prepared by chemical solution deposition. J Sol-Gel Sci Technol 98:24–30. https://doi.org/10.1007/s10971-021-05478-1

    Article  CAS  Google Scholar 

  52. Li A, Zhu Z, Xue Z, Liu Y (2022) Periodic ultrasound-assisted electrodeposition of Fe–Ni alloy foil. Mater Res Bull 150:111778. https://doi.org/10.1016/j.materresbull.2022.111778

    Article  CAS  Google Scholar 

  53. Ishihara M, Li SJ, Yumoto H et al. (1998) Control of preferential orientation of AlN films prepared by the reactive sputtering method. Thin Solid Films 316:152–157. https://doi.org/10.1016/S0040-6090(98)00406-4

    Article  CAS  Google Scholar 

  54. Verma V, Pandey NK, Gupta P, et al. (2021) Humidity sensing enhancement and structural evolution of tungsten doped ZnO nanosensors fabricated through co-precipitation synthesis. In: Phys. B Condens. Matter. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  55. Phillips R, Jolley K, Zhou Y, Smith R (2021) Influence of temperature and point defects on the X-ray diffraction pattern of graphite. Carbon Trends 5. https://doi.org/10.1016/j.cartre.2021.100124

  56. Pradeev Raj K, Sadaiyandi K, Kennedy A, Thamizselvi R (2016) Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater Chem Phys 183:24–36. https://doi.org/10.1016/j.matchemphys.2016.07.068

    Article  CAS  Google Scholar 

  57. Sathya M, Shobika PA, Ponnar M et al. (2022) Influence of Sr concentration on crystal structure, magnetic properties and supercapacitance performance of ZnO nanoparticles. J Mater Sci Mater Electron 33:6745–6765. https://doi.org/10.1007/s10854-022-07852-3

    Article  CAS  Google Scholar 

  58. Meryem LZ, Touidjen NEH, Aida MS, et al. (2023) Growth of undoped ZnO thin films by spray pyrolysis: effect of precursor concentration. J Opt. https://doi.org/10.1007/s12596-022-01079-5

  59. Manoharan C, Pavithra G, Bououdina M et al. (2016) Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films. Appl Nanosci 6:815–825. https://doi.org/10.1007/s13204-015-0493-8

    Article  CAS  Google Scholar 

  60. Manoharan C, Pavithra G, Dhanapandian S, Dhamodharan P (2015) Effect of in doping on the properties and antibacterial activity of ZnO films prepared by spray pyrolysis. Spectrochim Acta - Part A Mol Biomol Spectrosc 149:793–799. https://doi.org/10.1016/j.saa.2015.05.019

    Article  CAS  Google Scholar 

  61. Muchuweni E, Sathiaraj TS, Nyakotyo H (2016) Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceram Int 42:10066–10070. https://doi.org/10.1016/j.ceramint.2016.03.110

    Article  CAS  Google Scholar 

  62. Özmen A, Aydogan S, Yilmaz M (2019) Fabrication of spray derived nanostructured n-ZnO/p-Si heterojunction diode and investigation of its response to dark and light. Ceram Int 45:14794–14805. https://doi.org/10.1016/j.ceramint.2019.04.210

    Article  CAS  Google Scholar 

  63. Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134. https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  64. Gupta P, Maurya S, Pandey NK, Verma V (2021) Structural, electrical and humidity sensing properties of nano-structured nickel oxide prepared by sol-gel method. J Mater Sci Mater Electron 32:3529–3542. https://doi.org/10.1007/s10854-020-05099-4

    Article  CAS  Google Scholar 

  65. Dey PC, Das R (2021) Impact of Silver Doping on the Crystalline Size and Intrinsic Strain of MPA-Capped CdTe Nanocrystals: A Study by Williamson-Hall Method and Size-Strain Plot Method. J Mater Eng Perform 30:652–660. https://doi.org/10.1007/s11665-020-05358-9

    Article  CAS  Google Scholar 

  66. Perumal SL, Hemalatha P, Alagar M, Pandiyaraj KN (2015) Investigation of Structural, Optical and Photocatalytic Properties of Sr Doped ZnO Nanoparticles. Int J Chem Phys Sci 4

  67. Verma V, Pandey NK, Gupta P et al. (2021) Humidity sensing enhancement and structural evolution of tungsten doped ZnO nanosensors fabricated through co-precipitation synthesis. Phys B Condens Matter 619:413224. https://doi.org/10.1016/j.physb.2021.413224

    Article  CAS  Google Scholar 

  68. Stokes AR, Wilson AJC (1944) The diffraction of x rays by distorted crystal aggregates - I. Proc Phys Soc 56:174–181. https://doi.org/10.1088/0959-5309/56/3/303

    Article  CAS  Google Scholar 

  69. Senthil Saravanan MS, Sivaprasad K, Susila P, Kumaresh Babu SP (2011) Anisotropy models in precise crystallite size determination of mechanically alloyed powders. Phys B Condens Matter 406:165–168. https://doi.org/10.1016/j.physb.2010.10.023

    Article  CAS  Google Scholar 

  70. Augustin M, Balu T (2015) Estimation of lattice stress and strain in zinc ferrite nanoparticles by williamson-hall and size-strain plot methods. 13–17

  71. Yogamalar R, Srinivasan R, Vinu A et al. (2009) X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun 149:1919–1923. https://doi.org/10.1016/j.ssc.2009.07.043

    Article  CAS  Google Scholar 

  72. Mote V, Purushotham Y, Dole B (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys 6:2–9. https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  73. Wong-Ng W (2019) International tables for crystallography Vol. H, Section 7.8.3.2, pp. 814–819. https://doi.org/10.1107/97809553602060000115

  74. Wasly H (2018) X-ray analysis for determination the crystallite size and lattice strain in ZnO nanoparticles. J Al-Azhar Univ Eng Sect 13:1312–1320. https://doi.org/10.21608/auej.2018.18943

    Article  Google Scholar 

  75. Anbia M, Fard SEM (2012) Humidity sensing properties of Ce-doped nanoporous ZnO thin film prepared by sol-gel method. J Rare Earths 30:38–42. https://doi.org/10.1016/S1002-0721(10)60635-7

    Article  CAS  Google Scholar 

  76. Ares JR, Pascual A, Ferrer IJ, Sánchez C (2005) Grain and crystallite size in polycrystalline pyrite thin films. Thin Solid Films 480–481:477–481. https://doi.org/10.1016/j.tsf.2004.11.064

    Article  CAS  Google Scholar 

  77. Kumar P, Singh BK, Pal BN, Pandey PC (2016) Correlation between structural, optical and magnetic properties of Mn-doped ZnO. Appl Phys A Mater Sci Process 122:1–12. https://doi.org/10.1007/s00339-016-0265-7

    Article  CAS  Google Scholar 

  78. Maria Jose L, Anna Thomas S, Aravind A et al. (2023) Effect of Ni doping on the adsorption and visible light photocatalytic activity of ZnO hexagonal nanorods. Inorg Chem Commun 147:110208. https://doi.org/10.1016/j.inoche.2022.110208

    Article  CAS  Google Scholar 

  79. Pushpanathan V, Suresh Kumar D (2014) A novel zinc(II) macrocycle-based synthesis of pure ZnO nanoparticles. J Nanostruct Chem 4:95–101. https://doi.org/10.1007/s40097-014-0118-x

    Article  Google Scholar 

  80. Lee JH, Park BO (2003) Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol-gel method. Thin Solid Films 426:94–99. https://doi.org/10.1016/S0040-6090(03)00014-2

    Article  CAS  Google Scholar 

  81. Park SU, Koh JH (2013) Electrical and optical properties of in and Al doped ZnO thin film. Electron Mater Lett 9:493–496. https://doi.org/10.1007/s13391-013-0046-9

    Article  CAS  Google Scholar 

  82. Ma RX, Wang MK, Kang B, Wang YG (2011) Study on the structural, electrical and optical properties of AL-F co-doped ZnO thin films prepared by RF magnetron sputtering. Optoelectron Lett 7:0045–0048. https://doi.org/10.1007/s11801-011-9266-0

    Article  Google Scholar 

  83. Cairns DR, Witte RP, Sparacin DK et al. (2000) Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl Phys Lett 76:1425–1427. https://doi.org/10.1063/1.126052

    Article  CAS  Google Scholar 

  84. Tomer VK, Duhan S, Adhyapak PV, Mulla IS (2015) Mn-loaded mesoporous silica nanocomposite: a highly efficient humidity Sensor. In: J. Am. Ceram. Soc. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  85. Yadav BC, Srivastava R, Dwivedi CD (2008) Synthesis and characterization of ZnO-TiO2 nanocomposite and its application as a humidity sensor. Philos Mag 88:1113–1124. https://doi.org/10.1080/14786430802064642

    Article  CAS  Google Scholar 

  86. Singh H, Kumar A, Bansod BS et al. (2018) Enhanced moisture sensing properties of a nanostructured ZnO coated capacitive sensor. RSC Adv 8:3839–3845. https://doi.org/10.1039/c7ra10917b

    Article  CAS  Google Scholar 

  87. Tai WP, Oh JH (2002) Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process. In: J Mater Sci Mater Electron. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  88. Tai WP, Oh JH (2002) Preparation and humidity sensing behaviors of nanocrystalline SnO2/TiO2 bilayered films. In: Thin Solid Films. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  89. Chou KS, Lee TK, Liu FJ (1999) Sensing mechanism of a porous ceramic as humidity sensor. In: Sensors Actuators, B Chem. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  90. Sin NDM, Ahmad S, Malek MF, et al. (2013) Improvement sensitivity humidity sensor based on ZnO/SnO2 cubic structure. In: IOP Conf. Ser. Mater. Sci. Eng. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  91. Sin NDM, Samsudin N, Ahmad S, et al. (2013) Zn-doped SnO2 with 3D cubic structure for humidity sensor. In: Procedia Eng. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  92. Wu J, Chen Y, Shen W, et al. (2022) Highly sensitive, flexible and transparent TiO2/nanocellulose humidity sensor for respiration and skin monitoring. In: Ceram. Int. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  93. Biju KP, Jain MK (2008) Effect of crystallization on humidity sensing properties of sol-gel derived nanocrystalline TiO2 thin films. In: Thin Solid Films. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  94. Khaleel AK, Abbas LK (2023) Synthesis and characterization of PVDF/PMMA/ZnO hybrid nanocomposite thin films for humidity sensor application. In: Optik (Stuttg). https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  95. Chong MX, Li CT, Zhang LX, Bie LJ (2023) A high-performance impedimetric humidity sensor based on lead-free halide perovskite Cs2TeCl6. In: Sensors Actuators A Phys. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  96. Subki ASRA, Mamat MH, Zahidi MM, et al. (2022) Optimization of Aluminum Dopant Amalgamation Immersion Time on Structural, Electrical, and Humidity-Sensing Attributes of Pristine ZnO for Flexible Humidity Sensor Application. In: Chemosensors. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  97. Gu W, Zhang H, Chen C, Zhang J (2022) Study on the design of ZnO/PANI composites and the mechanism of enhanced humidity sensing properties. In: Curr Appl Phys https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  98. Thakur S, Patil P (2014) Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sens Actuators, B Chem 194:260–268. https://doi.org/10.1016/j.snb.2013.12.067

    Article  CAS  Google Scholar 

  99. Siddiqui MS, Mandal A, Kalita H, Aslam M (2022) Highly sensitive few-layer MoS2 nanosheets as a stable soil moisture and humidity sensor. In: Sensors Actuators B Chem. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  100. Smith AD, Elgammal K, Niklaus F, et al. (2015) Resistive graphene humidity sensors with rapid and direct electrical readout. In: Nanoscale. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  101. Bi H, Yin K, Xie X, et al. (2013) Ultrahigh humidity sensitivity of graphene oxide. In: Sci Rep https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  102. Rathi K, Pal K (2017) Impact of Doping on GO: Fast Response-Recovery Humidity Sensor. In: ACS Omega. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  103. Tao B, Yin J, Miao F, Zang Y (2022) High-performance humidity sensor based on GO/ZnO/plant cellulose film for respiratory monitoring. In: Ionics (Kiel). https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  104. Zhang Y, Li B, Jia Y (2022) High Humidity Response of Sol–Gel-Synthesized BiFeO3 Ferroelectric Film. In: Materials (Basel). https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  105. Zafar Q, Azmer MI, Al-Sehemi AG, et al. (2016) Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles. In: J Nanoparticle Res. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  106. Cheng Y, Xiong Y, Pan M, et al. (2023) A flexible, sensitive and stable humidity sensor based on an all-polymer nanofiber film. In: Mater Lett https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  107. Zhao B, Wang JS, Zheng J, et al. (2023) Performance analysis of humidity sensor prepared by CeO2/molecular sieves type 4A composite. In: Mater Lett https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  108. Taha WM, Morsy M, Nada NA, Ibrahim M (2022) Studying the humidity sensing behavior of MWCNTs boosted with Co3O4 nanorods. Diam Relat Mater 121:108754. https://doi.org/10.1016/j.diamond.2021.108754

    Article  CAS  Google Scholar 

  109. Babu Reddy LP, Megha R, Raj Prakash HG, et al. (2019) Copper ferrite-yttrium oxide (CFYO) nanocomposite as remarkable humidity sensor. In: Inorg. Chem. Commun. https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

  110. Algün G, Akçay N (2019) Enhanced sensing characteristics of relative humidity sensors based on Al and F co-doped ZnO nanostructured thin films. In: J Mater Sci Mater Electron https://www.originlab.com/doc/Origin-Help/Gadget-RiseTime

Download references

Funding

This study was funded by the Scientific Research Projects Coordination Unit of Istanbul University. Project numbers are FYL-2017-24168 and FDK-2021-38183.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was carried out by Halim Onur Öztel. Data collection was done by Namık Akçay. XRD measurements were made by Musa Mutlu Can. Analyses were carried out by Gökhan Algün and Namık Akçay. The first draft of the manuscript was written by Gökhan Algün and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gökhan Algün.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algün, G., Akçay, N., Öztel, H.O. et al. Synthesis and ultrafast humidity sensing performance of Sr doped ZnO nanostructured thin films: the effect of Sr concentration. J Sol-Gel Sci Technol 107, 640–658 (2023). https://doi.org/10.1007/s10971-023-06148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06148-0

Keywords

Navigation