Skip to main content
Log in

Critical properties of perovskite manganite La0.88Sr0.12MnO3 nanocrystalline

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The La0.88Sr0.12MnO3 nanocrystalline is synthesized by sol-gel chemical method, shows a typical paramagnetic-ferromagnetic phase transition at 280 K. A thorough study on critical behavior analysis of magnetization isotherms is performed by various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis. Based on these methods, the accurate critical exponents (β = 0.5936(2) and γ = 1.0928(6)) are determined. Both critical exponents (β and γ) have been confirmed to fulfill the Widom scaling relation δ = 1+\(\frac{\gamma }{\beta }\). Moreover, these exponents also obey the single scaling equation of \(\frac{H}{{M}^{\delta }}=h(\frac{\varepsilon }{{H}^{1/\beta }})\). The obtained critical exponents are closer to the theoretical prediction of mean-field model but shows a slight deviation from theoretical values. We proposed that this deviation is due to the inherent disorder effect as the dimension of La0.88Sr0.12MnO3 particles reduced to nanoscale.

Graphical Abstract

The La0.88Sr0.12MnO3 nanocrystalline was synthesized by sol-gel method. The nanocrystalline is roughly about 40nm in size measured with field emission scanning electron microscopy(FE-SEM). A thorough study on critical behavior analysis of magnetization isotherms are performed by scaling theory. Based on Kouvel-Fisher method, the accurate critical exponents (β = 0.5936(2) and γ = 1.0928(6)) are determined.

Highlight

  • La0.88Sr0.12MnO3 nanocrystalline is prepared by the sol-gel method.

  • The critical properties associated with the ferromagnetic transition are investigated by various techniques.

  • The critical exponents show a slight deviation from theoretical values due to the inherent disorder effect when the La0.88Sr0.12MnO3 particles reduced to nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Dagotto E (2003) Nanoscale phase separation and colossal magnetoresistance: the physics of manganites and related compounds. Springer, Berlin.

  2. Ram NR et al. (2018) Review on magnetocaloric effect and materials. J Superconduc Novel Magnetism 31:1971–1979

    Article  CAS  Google Scholar 

  3. Arun B et al. (2018) Effects of mn site substitution on magnetic ordering and critical behavior in nd0.67sr0.33mno3 manganite. J Phys Chem Solids 123:327–335

    Article  CAS  Google Scholar 

  4. Dalal B et al. (2022) Inverse exchange bias effects and magnetoelectric coupling of the half-doped perovskite-type chromites gd 0.5sr0.5cro3 and gd0.5ca0.5 cro3. Phys Rev B 106:104425

    Article  CAS  Google Scholar 

  5. Jose A et al. (2022) Observation of griffiths phase, critical exponent analysis and high magnetocaloric effect near room temperature at low magnetic field in v-doped la0.7sr0.3mno3. J Phys D: Appl Phys 55:215001

    Article  Google Scholar 

  6. Sudakshina B, Suneesh M, Arun B, Kakarla DC, Vasundhara M (2022) Effects of cr, co, ni substitution at mn-site on structural, magnetic properties and critical behaviour in nd0.67ba0.33mno3 mixed-valent manganite. J Magnet Magn Mater 548:168980

    Article  CAS  Google Scholar 

  7. Chatterjee S, Mazumdar D, Das K, Das I (2022) Magnetic and magnetocaloric properties of nanocrystalline sample of a glassy ferromagnetic compound: Modification of short range ordering. Mater Res Bullet 150:111758

    Article  CAS  Google Scholar 

  8. Tiwari JK, Chauhan HC, Kumar B, Ghosh S (2020) 3d-ising like ferromagnetism in skyrmionic-bubbles host infinite-layer la0.825sr0.175mno3 manganite perovskite. J Phys: Condensed Matter 32:195803

    CAS  Google Scholar 

  9. Amaral J et al. (2005) Magnetocaloric effect in er-and eu-substituted ferromagnetic la-sr manganites. J Magnet Magn Mater 290:686–689

    Article  Google Scholar 

  10. Markovich V et al. (2010) Size effect on the magnetic properties of antiferromagnetic la0.2ca0.8mno3 nanoparticles. Phys Rev B 81:094428

    Article  Google Scholar 

  11. Zhang T, Dressel M (2009) Grain-size effects on the charge ordering and exchange bias in pr0.5 ca0.5 mno3: The role of spin configuration. Phys Rev B 80:014435

    Article  Google Scholar 

  12. Wang Y, Fan HJ (2011) Magnetic phase diagram and critical behavior of electron-doped lax ca1−x mno3 (0 ≤ x ≤ 0.25) nanoparticles. Phys Rev B 83:224409

    Article  Google Scholar 

  13. Mohan CV, Seeger M, Kronmuller H, Murugaraj P, Maier J (1998) Critical behaviour near the ferromagnetic–paramagnetic phase transition in la0.8sr0.2mno3. J Magnet Magn Mater 183:348–355

    Article  CAS  Google Scholar 

  14. Fan J et al. (2019) Robust electronic phase separation on nanoscale of perovskite manganite la0.825sr0.175mno3. Ceram Int 45:9179–9184

    Article  CAS  Google Scholar 

  15. Nair S, Banerjee A, Narlikar A, Prabhakaran D, Boothroyd A (2003) Observation of three-dimensional heisenberg-like ferromagnetism in single crystal la0.875sr0.125mno3. Phys Rev B 68:132404

    Article  Google Scholar 

  16. Wang J et al. (2022) Magnetic properties and critical behavior of the perovskite manganite la0.825sr0.175mno3. Chem Phys Lett 807:140119

    Article  CAS  Google Scholar 

  17. Çoban Özkan D, Türk A, Celik E (2021) Synthesis and characterizations of lamno3 perovskite powders using sol–gel method. J Mater Sci: Mater Electron 32:15544–15562

    Google Scholar 

  18. Romero M et al. (2015) Interphase and magnetotransport of lsmo-pmma nanocomposites obtained by a sonochemical method. J Magnet Magn Mater 382:342–348

    Article  CAS  Google Scholar 

  19. Daengsakul S et al. (2009) Magnetic and cytotoxicity properties of la1−xsrxmno3 (0 ≤ x ≤ 0.5)nanoparticles prepared by a simple thermal hydro-decomposition. Nanoscale Res Lett 4:839–845

    Article  CAS  Google Scholar 

  20. Arrott A (1957) Criterion for ferromagnetism from observations of magnetic isotherms. Phys Rev 108:1394

    Article  CAS  Google Scholar 

  21. Ziese M (2001) Critical scaling and percolation in manganite films. J Phys: Condensed Matter 13:2919

    CAS  Google Scholar 

  22. Zhang X et al. (2016) Magnetic and magnetocaloric properties of nanocrystalline la0.5sr0.5mno3. Ceram Int 42:1476–1481

    Article  CAS  Google Scholar 

  23. Kaul S (1985) Static critical phenomena in ferromagnets with quenched disorder. J Magnet Magn Mater 53:5–53

    Article  CAS  Google Scholar 

  24. Banerjee B (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12:16–17

    Article  Google Scholar 

  25. Fan J et al. (2014) Critical exponents of the second-order manganite nd0.5sr0.25ca0.25mno3 determined from magnetic entropy change measurements. Phase Transit 87:676–684

    Article  CAS  Google Scholar 

  26. Zhang L et al. (2014) Critical behavior of spinel mnv2o4 investigated by dc-magnetization. J Appl Phys 115:233910

    Article  Google Scholar 

  27. Stanley, HE (1971) Phase transitions and critical phenomena, vol. 7. Clarendon Press, Oxford.

  28. Fisher ME (1967) The theory of equilibrium critical phenomena. Rep Prog Phys 30:615

    Article  CAS  Google Scholar 

  29. Xu L et al. (2015) Critical behavior and long-range ferromagnetic order in perovskite manganite nd0.55sr0.45mno3. Europhys Lett 112:17005

    Article  Google Scholar 

  30. Han L-a et al. (2019) Critical behavior in ni0.15cu0.15 zn0.7fe2o4 spinel ferrite. Ceram Int 45:14322–14326

    Article  CAS  Google Scholar 

  31. Kouvel JS, Fisher ME (1964) Detailed magnetic behavior of nickel near its curie point. Phys Rev 136:A1626

    Article  Google Scholar 

  32. Pramanik A, Banerjee A (2009) Critical behavior at paramagnetic to ferromagnetic phase transition in pr0.5 sr0.5mno3: A bulk magnetization study. Phys Rev B 79:214426

    Article  Google Scholar 

  33. Fan J et al. (2010) Critical properties of the perovskite manganite la 0.1 nd 0.6sr0.3 mno3. Phys Rev B 81:144426

    Article  Google Scholar 

  34. Phan M et al. (2010) Tricritical point and critical exponents of la0.7ca0.3−xsrxmno3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals. J Alloys Compound 508:238–244

    Article  CAS  Google Scholar 

  35. Zhang L et al. (2016) Critical phenomenon of the near room temperature skyrmion material fege. Sci Rep 6:1–8

    Google Scholar 

  36. Amaral V, Amaral J (2004) Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J Magnet Magn Mater 272:2104–2105

    Article  Google Scholar 

  37. Xu L et al. (2014) Investigation of magnetic entropy change and griffiths-like phase in la0.65ca0.35mno3 nanocrystalline. J Superconduct Novel Magnet 27:2779–2786

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by HPU Fundamental Research Funds (Grant NO. 19XJK23R, NO. 19XJK10R, NO. 19XJK22R, NO. 20XJK07R) and Hubei Provincial Department of Education research (No. Q20204501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to lisha Xu or Jiyu Fan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Ye, M., Zhao, L. et al. Critical properties of perovskite manganite La0.88Sr0.12MnO3 nanocrystalline. J Sol-Gel Sci Technol 107, 725–732 (2023). https://doi.org/10.1007/s10971-023-06090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06090-1

Keywords

Navigation