Skip to main content
Log in

Colorful patterned organic–inorganic hybrid silica films with a cholesteric structure

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Structural colors have been widely found in nature. Herein, structural colored organic–inorganic hybrid silica (OIHS) films were prepared using a mixture of an organosilane with an enantiotropic nematic phase and a chiral dopant under an acidic condition. After the polycondensation of organosilane, the selective Bragg reflection band of the obtained OIHS film shifted to short wavelength. Due to the E-Z photoisomerization of the chiral dopant, the liquid crystalline mixture showed a photochromic behavior, whose color changed from purple to red with extending UV irradiation time. Then, colorful patterns were prepared using masks.

Graphical abstract

Highlights

  • Photochromic liquid crytalline mixtures were prepared.

  • Structural colored organic–inorganic hybrid silica films were prepared.

  • The colorful patterns can be programmable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yue Y, Kurokawa T, Haque MA, Nakajima T, Nonoyama T, Li X, Kajiwara I, Gong JP (2014) Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat Commun 5:4659

    Article  CAS  Google Scholar 

  2. Teyssier J, Saenko SV, van der Marel D, Milinkovitch MC (2015) Photonic crystals cause active colour change in chameleons. Nat Commun 6:6368

    Article  CAS  Google Scholar 

  3. Potyrailo RA, Ghiradella H, Vertiatchikh A, Dovidenko K, Cournoyer JR, Olson E (2007) Morpho butterfly wing scales demonstrate highly selective vapour response. Nat Photonics 1:123–128

    Article  CAS  Google Scholar 

  4. Phan L, Kautz R, Leung EM, Naughton KL, Van Dyke Y, Gorodetsky AA (2016) Dynamic materials inspired by cephalopods. Chem Mater 28:6804–6816

    Article  CAS  Google Scholar 

  5. Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed 50:1492–1522

    Article  CAS  Google Scholar 

  6. Moirangthem A, Arts R, Merkx M, Schenning APHJ (2016) An optical sensor based on a photonic polymer film to detect calcium in serum. Adv Funct Mater 26:1154–1160

    Article  CAS  Google Scholar 

  7. Moirangthem M, Engels TAP, Murphy J, Bastiaansen CWM, Schenning APHJ (2017) Photonic shape memory polymer with stable multiple colors. ACS Appl Mater Interfaces 9:32161–32167

    Article  CAS  Google Scholar 

  8. Bisoyi HK, Li Q (2016) Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev 116:15089–15166

    Article  CAS  Google Scholar 

  9. Wang H, Zhang KQ (2013) Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13:4192–4213

    Article  CAS  Google Scholar 

  10. Hayata K, Suzuki T, Fukawa M, Furumi S (2019) Thermotropic cholesteric liquid crystals from cellulose derivatives with ester and carbamate groups. J Photopolym Sci Technol 32:645–649

    Article  CAS  Google Scholar 

  11. Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed 52:8912–8916

    Article  CAS  Google Scholar 

  12. Shopsowitz KE, Qi H, Hamad WY, Maclachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–426

    Article  CAS  Google Scholar 

  13. Choi H, Nishimura S, Toyooka T, Ishikawa K, Takezoe H (2011) Analysis of cavity-mode lasing characteristics from a resonator with broadband cholesteric liquid-crystal Bragg reflectors. Adv Funct Mater 21:3430–3438

    Article  CAS  Google Scholar 

  14. Yablonovitch E (1993) Photonic band-gap crystals. J Phys Condens Matter 5:2443–2460

    Article  Google Scholar 

  15. Eelkema R, Feringa BL (2006) Amplification of chirality in liquid crystals. Org Biomol Chem 4:3729–3745

    Article  CAS  Google Scholar 

  16. Kragt AJJ, Zuurbier NCM, Broer DJ, Schenning APHJ (2019) Temperature-responsive, multicolor-changing photonic polymers. ACS Appl Mater Interfaces 11:28172–28179

    Article  CAS  Google Scholar 

  17. Zhang Z, Chen Z, Wang Y, Zhao Y, Shang L (2021) Cholesteric cellulose liquid crystals with multifunctional structural colors. Adv Funct Mater 32:2107242

    Article  Google Scholar 

  18. Yang J, Zhao W, Yang Z, He W, Wang J, Ikeda T, Jiang L (2019) Printable photonic polymer coating based on a monodomain blue phase liquid crystal network. J Mater Chem C 7:13764–13769

    Article  CAS  Google Scholar 

  19. Myung D-B, Hussain S, Park S-Y (2019) Photonic calcium and humidity array sensor prepared with reactive cholesteric liquid crystal mesogens. Sens Actuat B Chem 298:126894

    Article  CAS  Google Scholar 

  20. Xu L, Zhang H, Wei J (2019) Fabrication of multicolored patterns based on dye-doped cholesteric liquid crystals. Photochem Photobio Sci 18:1638–1648

    Article  CAS  Google Scholar 

  21. Zhang W, Lub J, Schenning APHJ, Zhou G, de Haan LT (2020) Polymer stabilized cholesteric liquid crystal siloxane for temperature-responsive photonic coatings. Int J Mol Sci 21:1803

    Article  CAS  Google Scholar 

  22. Boyon C, Soldan V, Mitov M (2021) Bioinspired, cholesteric liquid-crystal reflectors with time-controlled coexisting chiral and achiral structures. ACS Appl Mater Interfaces 13:30118–30126

    Article  CAS  Google Scholar 

  23. Zhang P, Kragt AJJ, Schenning APHJ, de Haan LT, Zhou G (2018) An easily coatable temperature responsive cholesteric liquid crystal oligomer for making structural colour patterns. J Mater Chem C 6:7184–7187

    Article  CAS  Google Scholar 

  24. Ma J, Li Y, White T, Urbasb A, Li Q (2010) Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning. Chem Commun 46:3463–3465

    Article  CAS  Google Scholar 

  25. Qin L, Gu W, Wei J, Yu Y (2018) Piecewise phototuning of self-organized helical superstructures. Adv Mater 30:1704941

    Article  Google Scholar 

  26. Qin L, Wei J, Yu Y (2019) Photostationary RGB selective reflection from self-organized helical superstructures for continuous photopatterning. Adv Opt Mater 7:1900430

    Article  Google Scholar 

  27. Wang H, Bisoyi HK, Wang L, Urbas AM, Bunning TJ, Li Q (2018) Photochemically and thermally driven full-color reflection in a self-organized helical superstructure enabled by a halogen-bonded chiral molecular switch. Angew Chem Int Ed 57:1627–1631

    Article  CAS  Google Scholar 

  28. Kurosaki Y, Sagisaka T, Matsushima T, Ubukata T, Yokoyama Y (2020) Chiral, thermally irreversible and quasi-stealth photochromic dopant to control selective reflection wavelength of cholesteric liquid crystal. ChemPhysChem 21:1375–1383

    Article  CAS  Google Scholar 

  29. Saha A, Tanaka Y, Han Y, Bastiaansen CMW, Broerb DJ, Sijbesma RP (2012) Irreversible visual sensing of humidity using a cholesteric liquid crystal. Chem Commun 48:4579–4581

    Article  CAS  Google Scholar 

  30. Liu W, Wei H, Li H, Wang Y, Wu L, Li B, Li Y, Yang Y (2020) Structurally coloured organic-inorganic hybrid silica films with a chiral nematic structure prepared through a self-templating approach. Liq Cryst 48:521–525

    Article  CAS  Google Scholar 

  31. Chien C-C, Liu J-H (2015) Optical behaviors of cholesteric liquid-crystalline polyester composites with various chiral photochromic dopants. Langmuir 31:13410–13419

    Article  CAS  Google Scholar 

  32. Xu T, Li H, Liu W, Li Y, Li B, Yang Y (2022) Circularly polarized luminescence from cholesteric organic-inorganic hybrid silica films. Dyes Pigments 200:110121

  33. Huang W, Cao YB, Zhang XG, Li FS, Yang H (2009) Synthesis and helical twisting property of polymerizable chiral dopant with temperature-dependent solubility in liquid crystal. Chin Chem Lett 20:873–876

    Article  CAS  Google Scholar 

  34. Zhang L, Wang M, Wang L, Yang D-K, Yu H, Yang H (2016) Polymeric infrared reflective thin films with ultra-broad bandwidth. Liq Cryst 43:750–757

    Article  CAS  Google Scholar 

  35. Cao Y, Hamad WY, MacLachlan MJ (2018) Broadband circular polarizing film based on chiral nematic liquid crystals. Adv Optical Mater 6:1800412

    Article  Google Scholar 

  36. Huang Y, Jin M, Zhang S (2014) Polarization-independent bandwidth-variable tunable optical filter based on cholesteric liquid crystals. Jpn J Appl Phys 53:072601

    Article  CAS  Google Scholar 

  37. Nguyen TD, Hamad WY, MacLachlan MJ (2013) Tuning the iridescence of chiral nematic cellulose nanocrystals and mesoporous silica films by substrate variation. Chem Commun 49:11296–11298

    Article  CAS  Google Scholar 

  38. Lub J, Nijssen WPM, Wegh RT, Vogels JPA, Ferrer A (2005) Synthesis and properties of photoisomerizable derivatives of isosorbide and their use in cholesteric filters. Adv Funct Mater 15:1961–1972

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJA430009) and the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201905).

Author information

Authors and Affiliations

Authors

Contributions

TX: data curation, formal analysis, writing—original draft. RY: data curation. WL: formal analysis. HL: formal analysis, writing—review and editing. YL: formal analysis, funding acquisition. YY: supervision, project administration, writing—review and editing.

Corresponding author

Correspondence to Yonggang Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Yu, R., Liu, W. et al. Colorful patterned organic–inorganic hybrid silica films with a cholesteric structure. J Sol-Gel Sci Technol 104, 91–96 (2022). https://doi.org/10.1007/s10971-022-05926-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05926-6

Keywords

Navigation