Skip to main content
Log in

High temperature sintering induced acetone gas sensing properties of sol-gel synthesized HfO2 nanocrystals

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hafnium oxide nanocrystalline powders were synthesized by a low cost sol-gel technique using hafnium tetrachloride as the main precursor. The crystal structures and the particle sizes were investigated by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The morphologies of the powders were studied by Field Emission Scanning Electron Microscopy (FESM). The powder contained crystalline HfO2 nanoparticles having sizes from 50–100 nm which were highly stable against high temperature treatment. The chemical states of the hafnium and oxygen in HfO2 were identified by X-ray photoelectron spectroscopy (XPS). Optical properties of HfO2 nanocrystals were studied by photoluminescence spectroscopy. Intense green luminescence at an energy of 2.5 eV was emitted from HfO2 nanocrystalline powder under ultraviolet excitation. The room temperature acetone gas sensing properties of HfO2 nanocrystals were evaluated by exposing HfO2 pellets to acetone gas inside a sealed glass chamber. Due to sintering at a temperature of more than 1000 °C, a nanocrystalline, porous HfO2 pellet surface evolved that exhibited an enhanced response towards a few hundreds of ppm of acetone gas in dry air.

Fig. (a) Surface morphology and (b) dynamic acetone sensing property of HfO2 pellet after sintering at 1300 °C for 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li M, Jin Z-X, Zhang W et al. (2019) Comparison of chemical stability and corrosion resistance of group IV metal oxide films formed by thermal and plasma-enhanced atomic layer deposition. Sci Rep 9:10438. https://doi.org/10.1038/s41598-019-47049-z

    Article  CAS  Google Scholar 

  2. Baik M, Kang H-K, Kang Y-S et al. (2017) Electrical properties and thermal stability in stack structure of HfO2/Al2O3/InSb by atomic layer deposition. Sci Rep 7:11337. https://doi.org/10.1038/s41598-017-09623-1

    Article  CAS  Google Scholar 

  3. Galiana B, Benedicto M, Vázquez L et al. (2012) Thermal stability of HfO2-on-GaAs nanopatterns. Nanoscale 4:3734. https://doi.org/10.1039/c2nr30190c

    Article  CAS  Google Scholar 

  4. Ni J, Li Z, Zhou Q et al. (2011) Thermal Stability of HfO2 Nanostructures as Antireflection Coatings. Nanosci Nanotechnol Lett 3:731–734. https://doi.org/10.1166/nnl.2011.1222

    Article  CAS  Google Scholar 

  5. Villa I, Vedda A, Fasoli M et al. (2016) Size-Dependent Luminescence in HfO2 Nanocrystals: Toward White Emission from Intrinsic Surface Defects. Chem Mater 28:3245–3253. https://doi.org/10.1021/acs.chemmater.5b03811

    Article  CAS  Google Scholar 

  6. Liu Y, Niu G, Yang C et al. (2018) Silicate conductive filament assisted broadband light emission of HfO2 high- k solid state incandescent devices. J Mater Chem C 6:7913–7919. https://doi.org/10.1039/C8TC02402B

    Article  CAS  Google Scholar 

  7. Aguilar-Castillo A, Aguilar-Hernández JR, García-Hipólito M et al. (2017) White light generation from HfO2 films co-doped with Eu3++ Tb3+ ions synthesized by pulsed laser ablation technique. Ceram Int 43:355–362. https://doi.org/10.1016/j.ceramint.2016.09.163

    Article  CAS  Google Scholar 

  8. Li Y, Qi Y, Zhang H et al. (2020) Gram-scale synthesis of highly biocompatible and intravenous injectable hafnium oxide nanocrystal with enhanced radiotherapy efficacy for cancer theranostic. Biomaterials 226:119538. https://doi.org/10.1016/j.biomaterials.2019.119538

    Article  CAS  Google Scholar 

  9. Yu-Hsien Lin, Chao-Hsin Chien, Ching-Tzung Lin et al. (2006) Novel two-bit HfO2 nanocrystal nonvolatile flash memory. IEEE Trans Electron Devices 53:782–789. https://doi.org/10.1109/TED.2006.871190

    Article  CAS  Google Scholar 

  10. Yurchuk E, Muller J, Muller S et al. (2016) Charge-trapping phenomena in HfO2 -Based FeFET-Type nonvolatile memories. IEEE Trans Electron Devices 63:3501–3507. https://doi.org/10.1109/TED.2016.2588439

    Article  CAS  Google Scholar 

  11. Capone S, Leo G, Rella R et al. (1998) Physical characterization of hafnium oxide thin films and their application as gas sensing devices. J Vac Sci Technol A Vac, Surf, Film 16:3564–3568. https://doi.org/10.1116/1.580999

    Article  CAS  Google Scholar 

  12. Karaduman I, Barin Ö, Yıldız DE, Acar S (2015) The effect of ultraviolet irradiation on the ultra-thin HfO2 based CO gas sensor. J Appl Phys 118:174501. https://doi.org/10.1063/1.4935139

    Article  CAS  Google Scholar 

  13. Karaduman I, Barin Ö, Acar S (2016) UV-assisted room-temperature gas sensing by HfO2 thin films. J Korean Phys Soc 68:1334–1340. https://doi.org/10.3938/jkps.68.1334

    Article  CAS  Google Scholar 

  14. Karaduman I, Acar S (2017) The gas sensing properties of hafnium oxide thin films depending on the annealing environment. Mod Phys Lett B 31:1750284. https://doi.org/10.1142/S0217984917502840

    Article  CAS  Google Scholar 

  15. Karaduman I, Barin Ö, Özer M, Acar S (2016) Low-concentration NO2 gas sensor based on HfO2 thin films irradiated by ultraviolet light. J Electron Mater 45:3914–3920. https://doi.org/10.1007/s11664-016-4480-y

    Article  CAS  Google Scholar 

  16. Avila-García A, García-Hipólito M (2008) Characterization of gas sensing HfO2 coatings synthesized by spray pyrolysis technique. Sens Actuators B Chem 133:302–307. https://doi.org/10.1016/j.snb.2008.02.031

    Article  CAS  Google Scholar 

  17. Hanh NH, Duy LVan, Hung CM et al. (2021) High-performance acetone gas sensor based on Pt–Zn2SnO4 hollow octahedra for diabetic diagnosis. J Alloy Compd 886:161284. https://doi.org/10.1016/j.jallcom.2021.161284

    Article  CAS  Google Scholar 

  18. Liu T, Li L, Yang X et al. (2019) Mixed potential type acetone sensor based on Ce0.8Gd0.2O1.95 and Bi0.5La0.5FeO3 sensing electrode used for the detection of diabetic ketosis. Sens Actuators B Chem 296:126688. https://doi.org/10.1016/j.snb.2019.126688

    Article  CAS  Google Scholar 

  19. Wang J, Jiang L, Zhao L et al. (2020) Stabilized zirconia-based acetone sensor utilizing Fe2TiO5-TiO2 sensing electrode for noninvasive diagnosis of diabetics. Sens Actuators B Chem 321:128489. https://doi.org/10.1016/j.snb.2020.128489

    Article  CAS  Google Scholar 

  20. Scherrer P (1918) Nachr Ges Wiss Goettingen. Math Phys 2:98–100

    Google Scholar 

  21. Jayaraman V, Bhavesh G, Chinnathambi S et al. (2014) Synthesis and characterization of hafnium oxide nanoparticles for bio-safety. Mater Express 4:375–383. https://doi.org/10.1166/mex.2014.1190

    Article  CAS  Google Scholar 

  22. Wiatrowski A, Obstarczyk A, Mazur M et al. (2019) Characterization of HfO2 optical coatings deposited by MF magnetron sputtering. Coatings 9:106. https://doi.org/10.3390/coatings9020106

    Article  CAS  Google Scholar 

  23. Chaubey GS, Yao Y, Makongo JPA et al. (2012) Microstructural and thermal investigations of HfO2 nanoparticles. RSC Adv 2:9207. https://doi.org/10.1039/c2ra21003g

    Article  CAS  Google Scholar 

  24. Matsuda M, Himeno Y, Shida K, Matsuda M (2020) Microstructural characterization of black-monoclinic oxygen defective HfO2−x film formed on metal Hf plate in air. Ceram Int 46:6796–6800. https://doi.org/10.1016/j.ceramint.2019.11.171

    Article  CAS  Google Scholar 

  25. Papernov S, Brunsman MD, Oliver JB et al. (2018) Optical properties of oxygen vacancies in HfO2 thin films studied by absorption and luminescence spectroscopy. Opt Express 26:17608–17623

    Article  CAS  Google Scholar 

  26. Gritsenko VA, Islamov DR, Perevalov TV et al. (2016) Oxygen vacancy in Hafnia as a blue luminescence center and a trap of charge carriers. J Phys Chem C 120:19980–19986. https://doi.org/10.1021/acs.jpcc.6b05457

    Article  CAS  Google Scholar 

  27. Ghamsari MS, Gaeeni MR, Han W, Park H-H (2017) Efficient blue luminescence from HfO2 colloidal nanocrystals. Mater Express 7:72–78. https://doi.org/10.1166/mex.2017.1347

    Article  CAS  Google Scholar 

  28. Xie Q, Wang W, Xie Z et al. (2015) High-magnetic field annealing effect on room-temperature ferromagnetism enhancement of un-doped HfO2 thin films. Appl Phys A 119:917–921. https://doi.org/10.1007/s00339-015-9040-4

    Article  CAS  Google Scholar 

  29. Foster AS, Lopez Gejo F, Shluger AL, Nieminen RM (2002) Vacancy and interstitial defects in hafnia. Phys Rev B 65:174117. https://doi.org/10.1103/PhysRevB.65.174117

    Article  CAS  Google Scholar 

  30. Acharyya S, Nag S, Guha PK (2021) Selective detection of VOCs with WO 3 nanoplates-based single chemiresistive sensor device using machine learning algorithms. IEEE Sens J 21:5771–5778. https://doi.org/10.1109/JSEN.2020.3041322

    Article  CAS  Google Scholar 

  31. Yildiz A, Serin N, Kasap M et al. (2010) The thickness effect on the electrical conduction mechanism in titanium oxide thin films. J Alloy Compd 493:227–232. https://doi.org/10.1016/j.jallcom.2009.12.061

    Article  CAS  Google Scholar 

  32. Rex RE, Knorr FJ, McHale JL (2015) Imaging luminescent traps on single anatase TiO2 crystals: the influence of surface capping on photoluminescence and charge transport. J Phys Chem C 119:26212–26218. https://doi.org/10.1021/acs.jpcc.5b09005

    Article  CAS  Google Scholar 

  33. Meng F, Zheng H, Chang Y et al. (2018) One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties. IEEE Trans Nanotechnol 17:212–219. https://doi.org/10.1109/TNANO.2017.2789225

    Article  CAS  Google Scholar 

  34. Chen Y, Qin H, Cao Y et al. (2018) Acetone sensing properties and mechanism of SnO2 Thick-Films. Sensors 18:3425. https://doi.org/10.3390/s18103425

    Article  CAS  Google Scholar 

  35. Sun Y, Ge S, Huang H et al. (2016) Novel volatile organic compound (VOC) sensor based on Ag-decorated porous single-crystalline ZnO nanosheets. Mater Express 6:191–197. https://doi.org/10.1166/mex.2016.1292

    Article  CAS  Google Scholar 

  36. Fan X, Xu Y, He W (2021) High acetone sensing properties of In 2 O 3 –NiO one-dimensional heterogeneous nanofibers based on electrospinning. RSC Adv 11:11215–11223. https://doi.org/10.1039/D1RA00114K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Physics and Central Research Facility of IIT(ISM) Dhanbad for research and characterization facilities for this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: AC, JN; data collection: AC, JN; analysis and interpretation of results: AC, JN; draft manuscript preparation: AC, JN. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to J. Nayak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, A., Nayak, J. High temperature sintering induced acetone gas sensing properties of sol-gel synthesized HfO2 nanocrystals. J Sol-Gel Sci Technol 103, 791–798 (2022). https://doi.org/10.1007/s10971-022-05900-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05900-2

Keywords

Navigation