Skip to main content
Log in

Influence of cobalt doping concentration on ZnO/MWCNTs hybrid prepared by sol-gel method for antibacterial activity

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In recent years, cobalt attracted large interest in biological application, due to its biocompatibility and low toxicity. The synthesis of Co doped-ZnO/MWCNTs hybrid by a wet chemical process been reported. The results confirmed prevailing that it is the size of Zinc Oxide NPs by determines the concentration of precursor. The effect of changing the concentration of Co doping on the physical properties of the prepared samples was investigated. The X-ray diffraction showed the formation of hexagonal wurtzite structure of zinc oxide with disappearance the diffraction peaks from cobalt. The crystalline size average increased from 25.66 to 33.33 nm with increasing concentration of cobalt. FESEM images confirmed the success of the growth of spherical clusters over the surface of interlocking cylindrical tubes and their association with a crimped surface. This indicates a formation Co doped-ZnO\MWCNT hybrid. In contrast, the UV–Vis spectra revealed that all hybrid nanostructures have high absorbance as well as the band gap narrowing with increasing cobalt-doping concentration, the band gap values of Co doped-ZnO/MWCNTs hybrid with Co (2%, 4%, 6%, 8%) are 3.29, 3.04, 2.99, and 2.97 eV, respectively. Moreover, the antibacterial effect reveals that, the synthesized Co doped-ZnO/MWCNTs hybrid has high activity toward the Gram-positive and Gram-negative bacteria High inhibition efficiency shown about (17.8–22) mm for E. coli and (19.5–20.5) mm for S. aureus at high concentration of Co dopant.

Highlights

  • Prepared ZnO/MWCNTs as hybrid and Co doped-ZnO/MWCNTs hybrid by simple sol–gel method and study the effect of variation transition metals like Co on the hybrid (ZnO/MWCNTs) for the antibacterial activity of the against the E. coli and S. aureus bacteria. To our knowledge, there is no report of Co/ZnO–MWCNTs prepared by sol–gel.

  • Diethyl glycol a solvent was used in synthesizes of Co-doped ZnO/MWCNTs hybrid as the stabilizing factor, whose trap particle growth and quell particle conglomerate and gathering.

  • the incorporation of Co+2 in ZnO lattice leads to the shift in the optical absorption and band gap narrowing (BGN) of ZnO reduced with increasing cobalt-doping concentration.

  • The antibacterial activity of Co doped-ZnO–MWCNTs hybrid showed that increasing the concentration of the Co-dopant result in increasing the reactive oxygen spaces (ROS) and affected on their antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Wolf EL (2008) Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience. John Wiley & Sons, https://doi.org/10.1002/cphc.200500028

  2. Poole Jr, CP, Owens, FJ (2003) Introduction to nanotechnology. John Wiley & Sons

  3. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  4. Mirabootalebi SO, Akbari GH (2017) Methods for synthesis of carbon nanotubes—review. Int J Bio-Inorg Hybr Nanomater 6(2):49–57

    Google Scholar 

  5. Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. Carbon nanotubes. 80:391–425

  6. Yang N et al. (2015) Carbon nanotube based biosensors. Sens Actuators B Chem 207:690–715

    Article  CAS  Google Scholar 

  7. Czyzowska A, Barbasz A(2020) A review: zinc oxide nanoparticles-—friends or enemies? Int J Environ Health Res 10:1–17

    CAS  Google Scholar 

  8. Ischenko V et al. (2005) Zinc oxide nanoparticles with defects. Adv Funct Mater 15(12):1945–1954

    Article  CAS  Google Scholar 

  9. Carofiglio M et al. (2020) Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl Sci 10(15):5194

    Article  CAS  Google Scholar 

  10. Dietl T (2010) A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater 9(12):965–974

    Article  CAS  Google Scholar 

  11. Al-Jawad SM, Ismail MM (2017) Characterization of Mn, cu, and (Mn, cu) co-doped ZnS nanoparticles. J Opt Technol 84(7):495–499

    Article  CAS  Google Scholar 

  12. Largani SH, Pasha MA (2017) The effect of concentration ratio and type of functional group on synthesis of CNT–ZnO hybrid nanomaterial by an in situ sol–gel process. Int Nano Lett 7(1):25–33

    Article  CAS  Google Scholar 

  13. Al-Jawad SM, Elttayf AK, Saber AS (2017) Influence of annealing temperature on the characteristics of nanocrystalline SnO2 thin films produced by sol–gel and chemical bath deposition for gas sensor applications. Surf Rev Lett 24(07):1750104

    Article  CAS  Google Scholar 

  14. Singh NK, Koutu V, Malik M (2019) Enhancement of room temperature ferromagnetic behavior of Co-doped ZnO nanoparticles synthesized via sol–gel technique. J Sol–Gel Sci Technol 91(2):324–334

    Article  CAS  Google Scholar 

  15. Maensiri S et al. (2006) Magnetic behavior of nanocrystalline powders of Co-doped ZnO diluted magnetic semiconductors synthesized by polymerizable precursor method. J Magn Magn Mater 301(2):422–432

    Article  CAS  Google Scholar 

  16. Zak AK et al. (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram Int 37(1):393–398

    Article  CAS  Google Scholar 

  17. do Amaral Montanheiro TL et al. (2015) Effect of MWCNT functionalization on thermal and electrical properties of PHBV/MWCNT nanocomposites. J Mater Res 30(1):55–65

    Article  CAS  Google Scholar 

  18. Al-Jawad SM, Salman ON, Yousif NA (2019) Influence of growth time on structural, optical and electrical properties of TiO2 nanorod arrays deposited by hydrothermal method. Surf Rev Lett 26(03):1850155

    Article  Google Scholar 

  19. Reddy MM et al. (2017) Synthesis of zinc oxide and carbon nanotube composites by CVD method: photocatalytic studies. J Porous Mater 24(1):149–156

    Article  CAS  Google Scholar 

  20. Al-Jawad SM et al. (2019) Synthesis and characterization of Fe–ZnO thin films for antimicrobial activity. Surf Rev Lett 26(05):1850197

    Article  CAS  Google Scholar 

  21. Ansari SAMK et al. (2019) Magnetic iron oxide nanoparticles: synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials 12(3):465

    Article  CAS  Google Scholar 

  22. Al-Jawad SM, Mohammad MR, Imran NJ (2018) Effect of electrolyte solution on structural and optical properties of TiO2 grown by anodization technique for photoelectrocatalytic application. Surf Rev Lett 25(04):1850078

    Article  CAS  Google Scholar 

  23. Liu B, Zeng HC (2004) Fabrication of ZnO “dandelions” via a modified Kirkendall process. J Am Chem Soc 126(51):16744–16746

    Article  CAS  Google Scholar 

  24. Cheng X et al. (2011) Characterization of multiwalled carbon nanotubes dispersing in water and association with biological effects. J Nanomaterials 2011:1–13

    Google Scholar 

  25. Cui H et al. (2017) Effects of various surfactants on the dispersion of MWCNTs–OH in aqueous solution. Nanomaterials 7(9):262

    Article  CAS  Google Scholar 

  26. Wojnarowicz J et al. (2015) Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis. Beilstein J Nanotechnol 6(1):1957–1969

    Article  CAS  Google Scholar 

  27. Choi M-S et al. (2020) High-performance ultraviolet photodetector based on a zinc oxide nanoparticle@ single-walled carbon nanotube heterojunction hybrid film. Nanomaterials 10(2):395

    Article  CAS  Google Scholar 

  28. Al-Jawad SM (2017) Influence of multilayer deposition on characteristics of nanocrystalline SnO2 thin films produce by sol-gel technique for gas sensor application. Optik 146:17–26

    Article  CAS  Google Scholar 

  29. Chen C et al. (2012) Multi-walled carbon nanotubes supported Cu-doped ZnO nanoparticles and their optical property. J Nanopart Res 14(4):1–8

    Article  CAS  Google Scholar 

  30. Wojnarowicz J et al. (2016) Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles. Beilstein J Nanotechnol 7(1):721–732

    Article  CAS  Google Scholar 

  31. Byrappa K et al. (2008) Hydrothermal preparation of ZnO: CNT and TiO 2: CNT composites and their photocatalytic applications. J Mater Sci 43(7):2348–2355

    Article  CAS  Google Scholar 

  32. Al-Jawad SM et al. (2021) Influence of nickel doping concentration on the characteristics of nanostructure CuS prepared by hydrothermal method for antibacterial activity. Surf Rev Lett 28(01):1–16

    Article  Google Scholar 

  33. Dai K et al. (2012) Large scale preparing carbon nanotube/zinc oxide hybrid and its application for highly reusable photocatalyst. Chem Eng J 191:571–578

    Article  CAS  Google Scholar 

  34. Kasar CK, Bange JP, Patil D (2017) Effect of cerium composition on optical and structural properties of cerium doped ZnO nanowires. J Mater Sci: Mater Electron 28(15):11217–11221

    CAS  Google Scholar 

  35. Sonawane B, Bhole M, Patil D (2010) Effect of magnesium incorporation in zinc oxide films for optical waveguide applications. Phys B Condens Matter 405(6):1603–1607

    Article  CAS  Google Scholar 

  36. Sonawane B, Vrushali Shelke MP, Bhole DS (2011) Patil, Structural, optical and electrical properties of cadmium zinc oxide films for light emitting devices. J Phys Chem Solids 72(12):1442–1446

    Article  CAS  Google Scholar 

  37. Zhao Y et al. (2009) Plasmonic Cu2− x S nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides. J Am Chem Soc 131(12):4253–4261

    Article  CAS  Google Scholar 

  38. AL-Jawad SM et al. (2018) Studying structural, morphological and optical properties of nanocrystalline ZnO: Ag films prepared by sol–gel method for antimicrobial activity. J Sol–Gel Sci Technol 87(2):362–371

    Article  CAS  Google Scholar 

  39. Prodana M et al. (2011) Enhancing antibacterial effect of multiwalled carbon nanotubes using silver nanoparticles. Microscopy 6(2):549–556

    Google Scholar 

  40. Akhavan O, Azimirad R, Safa S (2011) Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria. Mater Chem Phys 130(1-2):598–602

    Article  CAS  Google Scholar 

  41. Shakeel N et al. (2020) Green synthesis of ZnO nanoparticles decorated on polyindole functionalized-MCNTs and used as anode material for enzymatic biofuel cell applications. Sci Rep. 10(1):1–10

    CAS  Google Scholar 

  42. Varshney K (2014) Carbon nanotubes: a review on synthesis, properties and applications. Int J Eng Res Gen Sci 2(4):660–677

    Google Scholar 

  43. Dinh NX et al. (2015) Water-dispersible silver nanoparticles-decorated carbon nanomaterials: synthesis and enhanced antibacterial activity. Appl Phys A 119(1):85–95

    Article  CAS  Google Scholar 

  44. Le A-T et al. (2010) Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Curr Appl Phys 10(3):910–916

    Article  Google Scholar 

  45. Le A-T et al. (2010) Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mater Sci Eng C 30(6):910–916

    Article  CAS  Google Scholar 

  46. Al-Jawad SM (2017) Structural and optical properties of core–shell TiO 2/CdS prepared by chemical bath deposition. J Electron Mater 46(10):5837–5847

    Article  CAS  Google Scholar 

  47. Hajipour MJ et al. (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511

    Article  CAS  Google Scholar 

  48. Dizaj SM et al. (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19

    CAS  Google Scholar 

  49. Chen H et al. (2013) Broad‐spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9(16):2735–2746

    Article  CAS  Google Scholar 

  50. Lawrence J et al. (2016) Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities. Environ Sci Pollut Res 23(10):10090–10102

    Article  CAS  Google Scholar 

  51. Vijayaprasath G et al. (2016) Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles. Mater Res Bull 76:48–61

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma M. H. AL-Jawad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakir, Z.S., AL-Jawad, S.M.H. & Ahmed, D.S. Influence of cobalt doping concentration on ZnO/MWCNTs hybrid prepared by sol-gel method for antibacterial activity. J Sol-Gel Sci Technol 100, 115–131 (2021). https://doi.org/10.1007/s10971-021-05603-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05603-0

Keywords

Navigation