Skip to main content
Log in

Improved electrochromic performances of WO3-based thin films via addition of CNTs

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Construction of a composite WO3 film has been considered to be an important way to improving the electrochemical performances and electrochromic properties. Herein, we fabricated a composite film containing WO3 nanoparticles, chitosan (CS), and carbon nanotubes (CNTs) by a layer-by-layer technique (LbL). The composite film displays light black to dark blue over the potential range from 0 to −1.5 V. Compared with the WO3/CS film, the WO3/CS-CNTs film displays increased current densities, which supported a greater number of sites for Li+ ions intercalation and extraction. Furthermore, the electrochromic performance of the composite film is enhanced by incorporation of CNTs into the WO3 film, resulting in coloration efficiency of 79.2 cm2 C−1 and optical contrast of 13.5 % at 800 nm under a square wave potential from −1.5 to +1.5 V. Therefore, the improved electrochromic properties could be achieved using WO3 and CNTs composite film.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zloczewska A, Celebanska A, Szot K, Tomaszewska D, Opallo M, Jönsson-Niedziolka M (2014) Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display. Biosens Bioelectron 54:445–461

    Article  Google Scholar 

  2. Saikia DS, Pan Y-C, Wu C-G, Fang J, Tsai L-D, Kao H-M (2014) Synthesis and characterization of a highly conductive organic–inorganic hybrid polymer electrolyte based on amine terminated triblock polyethers and its application in electrochromic devices. J Mater Chem C 2:331–343

    Article  Google Scholar 

  3. Matsushita S, Jeong YS, Akagi K (2013) Electrochromism-driven linearly and circularly polarized dichroism of poly(3,4-ethylenedioxythiophene) derivatives with chirality and liquid crystallinity. Chem Commun 49:1883–1890

    Article  Google Scholar 

  4. Wang A-M, Liu L, Chen W-L, Zhang Z-M, Su Z-M, Wang E-B (2013) A new electrodeposition approach for preparing polyoxometalates-based electrochromic smart windows. J Mater Chem A 1:216–220

    Article  Google Scholar 

  5. Kholmanov IN, Domingues SH, Chou H, Wang XH, Tan C, Kim J-Y, Li HF, Piner R, Zarbin AJG, Ruoff RS (2013) Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 7:1811–1816

    Article  Google Scholar 

  6. Yao DD, Tani RA, O’Mullane AP, Kalantar-zadeh K (2014) Enhanced coloration efficiency for electrochromic devices based on anodized Nb2O5/electrodeposited MoO3 binary systems. J Phys Chem C 118:10867–10873

    Article  Google Scholar 

  7. Williams TE, Chang CM, Rosen EL, Garcia G, Runnerstrom EL, Williams BL, Koo B, Buonsanti R, Milliron DJ, Helms BA (2014) NIR-Selective electrochromic heteromaterial frameworks: a platform to understand mesoscale transport phenomena in solid-state electrochemical devices. J Mater Chem C 2:3328–3335

    Article  Google Scholar 

  8. Shaplov AS, Ponkratov DO, Aubert P-H, Lozinskaya EI, Plesse C, Vidal F, Vygodskii YS (2014) A first truly all-solid state organic electrochromic device based on polymeric ionic liquids. Chem Commun 50:3191–3193

    Article  Google Scholar 

  9. Jensen J, Hösel M, Kim I, Yu J-S, Jo J, Krebs FC (2014) Fast switching ITO free electrochromic devices. Adv Funct Mater 24:1228–1233

    Article  Google Scholar 

  10. Cai G, Tu J, Zhou D, Li L, Zhang J, Wang X, Gu C (2014) Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application. J Mater Chem C 118:6690–6696

    Google Scholar 

  11. Jurin FE, Buron CC, Martin N, Filiâtre C (2014) Preparation of conductive PDDA/(PEDOT:PSS) multilayer thin film: influence of polyelectrolyte solution composition. J Colloid Interface Sci 431:64–70

    Article  Google Scholar 

  12. Luo J, Chen Y, Ma Q, Liu R, Liu X (2014) Layer-by-layer assembled ionic-liquid functionalized graphene–polyaniline nanocomposite with enhanced electrochemical sensing properties. J Mater Chem C 2:4814–4827

    Google Scholar 

  13. Saad A, Oms O, Marrot J, Dolbecq A, Hakouk K, El Bekkachi H, Jobic S, Deniard P, Dessapt R, Garrot D, Boukheddaden K, Liu R, Zhang G, Keita B, Mialanea P (2014) Design and optical investigations of a spironaphthoxazine/polyoxometalate/spiropyran triad. J Mater Chem C 2:4748–4758

    Article  Google Scholar 

  14. Nam YS, Park H, Magyar AP, Yun DS, Pollom TS, Belcher AM (2014) Virus-templated iridium oxide–gold hybrid nanowires for electrochromic application. Nanoscale 4:3405–3409

    Article  Google Scholar 

  15. Vuk AŠ, Koželj M, Orel B (2014) Comparison of electrochromic devices with V- and Sn/Mo-oxide counter electrodes and (3-glycidoxypropyl)trimethoxysilane-based ormolytes with three different lithium salts. Solar Energy Mater Solar Cells 128:166–177

    Article  Google Scholar 

  16. Cai G, Tu J, Zhang J, Mai Y, Lu Y, Gu C, Wang X (2012) An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale 4:5724–5730

    Article  Google Scholar 

  17. Yang Y, Kim D, Schmuki P (2011) Electrochromic properties of anodically grown mixed V2O5–TiO2 nanotubes. Electrochem Commun 13:1021–1025

    Article  Google Scholar 

  18. Cai GF, Tu JP, Zhou D, Wang XL, Gu CD (2014) Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Solar Energy Mater Solar Cells 124:103–110

    Article  Google Scholar 

  19. Xiao W, Liu WT, Mao XH, Zhu H, Wang DH (2013) Na2SO4-assisted synthesis of hexagonal-phase WO3 nanosheet assemblies with applicable electrochromic and adsorption properties. J Mater Chem A 1:1261–1269

    Article  Google Scholar 

  20. Li CP, Engtrakul C, Tenent RC, Wolden CA (2015) Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Solar Energy Mater Solar Cells 132:6–14

    Article  Google Scholar 

  21. Adhikari S, Sarkar D (2014) High efficient electrochromic WO3 nanofibers. Electrochim Acta 138:115–123

    Article  Google Scholar 

  22. Li JY, Huang J-F, Wu J-P, Cao L-Y, Cheng Y-Y, Yanagisawa K (2014) Facile one-step deposition of electrochromic WO3·0.33H2O films on ITO substrate under solvothermal condition. Mater Lett 115:151–154

    Article  Google Scholar 

  23. Song YY, Gao ZD, Wang J-H, Xia X-H, Lynch R (2011) Multistage coloring electrochromic device based on TiO2 nanotube arrays modified with WO3 nanoparticles. Adv Funct Mater 21:1941–1946

    Article  Google Scholar 

  24. Karuppasamy A (2013) Electrochromism in surface modified crystalline WO3 thin films grown by reactive DC magnetron sputtering. Appl Surf Sci 282:77–83

    Article  Google Scholar 

  25. Leftheriotis G, Koubli E, Yianoulis P (2013) Combined electrochromic-transparent conducting coatings consisting of noble metal, dielectric and WO3 multilayers. Solar Energy Mater Solar Cells 116:110–119

    Article  Google Scholar 

  26. Li H, Shi G, Wang H, Zhang Q, Li Y (2014) Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. J Mater Chem A 2:11305–11310

    Article  Google Scholar 

  27. Dalavi DS, Devan RS, Patil RA, Patil RS, Ma YR, Sadale SB, Kim IY, Kim J-H, Patil PS (2013) Efficient electrochromic performance of nanoparticulate WO3 thin films. J Mater Chem C 1:3722–3728

    Article  Google Scholar 

  28. Moshofsky B, Mokari T (2014) Electrochromic active layers from ultrathin nanowires of tungsten oxide. J Mater Chem C 2:3556–3561

    Article  Google Scholar 

  29. Small WR, Masdarolomoor F, Wallace GG, Panhuis M (2007) Inkjet deposition and characterization of transparent conducting electroactive polyaniline composite films with a high carbon nanotube loading fraction. J Mater Chem 17:4359–4361

    Article  Google Scholar 

  30. Bhandari S, Deepa M, Srivastava AK, Joshi AG, Kant R (2009) Poly(3,4-ethylenedioxythiophene) multiwalled carbon nanotube composite films: structure-directed amplified electrochromic response and improved redox activity. J Phys Chem B 113:9416–9428

    Article  Google Scholar 

  31. Liu SP, Xu L, Li FY, Guo WG, Xing Y, Sun ZX (2011) Carbon nanotubes-assisted polyoxometalate nanocomposite film with enhanced electrochromic performance. Electrochim Acta 56:8156–8162

    Article  Google Scholar 

  32. Nossol E, Zarbin AJG (2013) Electrochromic properties of carbon nanotubes/Prussian blue nanocomposite films. Solar Energy Mater Solar Cells 109:40–46

    Article  Google Scholar 

  33. Kadam PM, Tarwal NL, Mali SS, Deshmukh HP, Patil PS (2011) Enhanced electrochromic performance of f-MWCNT-WO3 composite. Electrochim Acta 58:556–561

    Article  Google Scholar 

  34. Shen KY, Hu CW, Chang L-C, Ho KC (2012) A complementary electrochromic device based on carbon nanotubes/conducting polymers. Solar Energy Mater Solar Cells 98:294–299

    Article  Google Scholar 

  35. Huguenin F, Zucolotto V, Carvalho AJF, Gonzalez ER, Oliveira ON (2005) Layer-by-layer hybrid films incorporating WO3, TiO2, and chitosan. Chem Mater 17:3739–6745

    Article  Google Scholar 

  36. Cai GF, Tu J-P, Zhou D, Li L, Zhang JH, Wang XL, Gu C-D (2014) The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngCommon 16:6866–6872

    Article  Google Scholar 

  37. Lee K, Kim D, Berger S, Kirchgeorg R, Schmuki P (2012) Anodically formed transparent mesoporous TiO2 electrodes for high electrochromic contrast. J Mater Chem 22:9821–9825

    Article  Google Scholar 

  38. Wang KF, Zeng PF, Zhai J, Liu QQ (2013) Electrochromic films with a stacked structure of WO3 nanosheets. Electrochem Commun 26:5–9

    Article  Google Scholar 

  39. Vuong NM, Kim D, Kim H (2013) Electrochromic properties of porous WO3-TiO2 core-shell nanowires. J Mater Chem C 1:3399–3407

    Article  Google Scholar 

  40. Wang C-K, Lin C-K, Wu C-L, Wang S-C, Huang J-L (2013) Synthesis and characterization of electrochromic plate-like tungstenoxide films by acidic treatment of electrochemical anodized tungsten. Electrochim Acta 112:24–31

    Article  Google Scholar 

  41. Yang L, Ge D, Zhao J, Ding Y, Kong X, Li Y (2012) Improved electrochromic performance of ordered macroporous tungsten oxide films for IR electrochromic device. Solar Energy Mater Solar Cells 100:251–257

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support from the Natural Science Foundation of China (Grant No. 21301041), Postdoctoral Scientific Research Starting Foundation of Heilongjiang Province, China (No. LBH-Q15072), Harbin University of Commerce Doctor Start-up Fund Research (No. 12DW030), the Department of Education of Jilin Province (No. 2014349 and 2015431), Jilin Science and Technology Bureau (No. 20156418), Jilin Institute of Chemical Technology (No. 201343 and 2015031), and Natural Science Foundation of Heilongjiang Province of China (No. B201409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, W. Improved electrochromic performances of WO3-based thin films via addition of CNTs. J Sol-Gel Sci Technol 80, 480–486 (2016). https://doi.org/10.1007/s10971-016-4093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4093-1

Keywords

Navigation