Skip to main content
Log in

Mesoporous organic–inorganic hybrid material containing hydrosilylated soybean oil

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Vegetable oils are attractive substrates for use as renewable feedstock in polymer industry. Hydrosilylation is a way to insert silicon groups in an olefin, and if the silylated olefin has hydrolysable groups, it can be used as precursor reagent in sol–gel synthesis. In this work, for the first time, the hydrosilylation of the vegetable soybean oil is reported, and it was used as sol–gel molecular precursor, along with tetraethylorthosilicate, varying their proportions. The obtained organic–inorganic silica-based hybrid material was characterized by infrared spectroscopy, N2 adsorption–desorption isotherms, scanning electron microscopy, and thermogravimetric analysis. The hybrid contains the oil chain covalently anchored, and it presents interesting textural characteristics, such as high surface area and mesoporosity, which seem not be markedly affected by the organic amount added.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schäfer HJ (2011) Angew Chem Int Ed Engl 50:3854–3871

    Article  Google Scholar 

  2. Winkler M, Lacerda TM, Mack F, Meier MAR (2015) Macromolecules 48:1398–1403

    Article  Google Scholar 

  3. Balbino JM, de Menezes EW, Benvenutti EV, Cataluña R, Ebeling G, Dupont J (2011) Green Chem 13:3111–3116

    Article  Google Scholar 

  4. Alam M, Akra D, Sharmin E, Zafar F, Ahmad S (2014) Arabian J Chem 7:469–479

    Article  Google Scholar 

  5. Miao S, Wang P, Su Z, Zhang S (2014) Acta Biomater 10:1692–1704

    Article  Google Scholar 

  6. Sharma RV, Somidi AKR, Dalai AK (2015) J Agric Food Chem 63:3235–3242

    Article  Google Scholar 

  7. Deuss PJ, Barta K, de Vries JG (2014) Catal Sci Technol 4:1174–1196

    Article  Google Scholar 

  8. Behr A, Westfechtel A, Gomes JP (2008) Chem Eng Technol 31:700–714

    Article  Google Scholar 

  9. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13–30

    Article  Google Scholar 

  10. Huber T, Firlbeck D, Riepl HM (2013) J Organomet Chem 744:144–148

    Article  Google Scholar 

  11. El Kadib A, Asgatay S, Delpech F, Castel A, Rivière P (2005) Eur J Org Chem 21:4699–4704

    Article  Google Scholar 

  12. Öztürk BO, Topoglu B, Şehitoglu SK (2015) Eur J Lipid Sci Technol 117:200–208

    Article  Google Scholar 

  13. Baibich IM, Gregório JR, Kern C, Rudler H (1996) J Braz Chem Soc 7:83–86

    Article  Google Scholar 

  14. Riley SJ, Verkade JG, Angelici RJ (2015) J Am Oil Chem Soc 92:589–601

    Article  Google Scholar 

  15. Gerbase AE, Brasil MC, Gregório JR, Mendes ANF, von Holleben MLA, Martinelli M (2002) Grasas Aceites 53:175–178

    Article  Google Scholar 

  16. Gregório JR, Gerbase AE, Martinelli M, Brasil MC, Mendes ANF (2002) J Am Oil Chem Soc 79:179–181

    Article  Google Scholar 

  17. Behr A, Vorholt AJ (2012) In: Meier MAR, Weckhuysen BM, Bruijnincx PCA (eds) Hydroformylation and related reactions of renewable resources, topics in organometallic chemistry, vol 39. Springer, Berlin, pp 103–128

    Google Scholar 

  18. Mendes ANF, da Rosa RG, Gregório JR (2005) Catal Commun 6:379–384

    Article  Google Scholar 

  19. Mendes ANF, Gregório JR, da Rosa RG (2005) J Braz Chem Soc 16:1124–1129

    Article  Google Scholar 

  20. Troegel D, Stohrer J (2011) Coord Chem Rev 255:1440–1459

    Article  Google Scholar 

  21. Speier JL, Zimmerman R, Webster J (1956) J Am Chem Soc 78:2278–2281

    Article  Google Scholar 

  22. Saghian N, Gertner D (1974) J Am Oil Chem Soc 51:363–367

    Article  Google Scholar 

  23. Behr A, Naendrup F, Obst D (2002) Adv Synth Catal 344:1142–1145

    Article  Google Scholar 

  24. Behr A, Naendrup F, Obst D (2002) Eur J Lipid Sci Technol 104:161–166

    Article  Google Scholar 

  25. El Kadib A, Katir N, Castel A, Delpech F, Rivière P (2007) Appl Organomet Chem 21:590–594

    Article  Google Scholar 

  26. El Kadib A, Castel A, Delpech F, Rivière P (2005) Chem Phys Lipids 148:112–120

    Article  Google Scholar 

  27. Delpech F, Asgatay S, Castel A, Rivière P, Rivière-Baudet M, Amin-Alami A, Manriquez J (2001) Appl Organomet Chem 15:626–634

    Article  Google Scholar 

  28. Lligadas G, Ronda JC, Galià M, Cádiz V (2006) Biomacromolecules 7:2420–2426

    Article  Google Scholar 

  29. Benvenutti EV, Moro CC, Costa TMH, Gallas MR (2009) Quim Nova 32:1926–1933

    Article  Google Scholar 

  30. Brasil MC, Gerbase AE, de Luca MA, Gregório JR (2007) J Am Oil Chem Soc 84:289–295

    Article  Google Scholar 

  31. Lligadas G, Callau L, Ronda JC, Galià M, Cádiz V (2005) J Polym Sci A Polym Chem 43:6295–6307

    Article  Google Scholar 

  32. El Kadib A, Katir N, Marcotte N, Molvinger K, Castel A, Rivière P, Brunel D (2009) J Mater Chem 19:6004–6014

    Article  Google Scholar 

  33. Shriver DF, Drezdzon MA (1986) The manipulation of air-sensitive compounds, 2nd edn. Wiley, New Jersey

    Google Scholar 

  34. Miyake Y, Yokomizo K, Matsuzaki N (1998) J Am Oil Chem Soc 75:15–19

    Article  Google Scholar 

  35. Pavan FA, Gobbi SA, Costa TMH, Benvenutti EV (2002) J Therm Anal Calorim 68:199–206

    Article  Google Scholar 

  36. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, chap 3 and 4. Academic Press, London

  37. Colthup NB, Daily LH, Wiberley SE (1975) Introduction to infrared and Raman spectroscopy, 2nd edn, chap 7, 10 and 12. Academic Press, New York

  38. Costa TMH, Gallas MR, Benvenutti EV, da Jornada JAH (1997) J Non-Cryst Solids 220:195–201

    Article  Google Scholar 

  39. Gregório JR, Mendes ANF, da Rosa RG (2012) Quim Nova 35:1940–1944

    Article  Google Scholar 

  40. Gregório JR, da Rosa RG, Mendes ANF, Bayón JC (2011) Catal Lett 141:977–981

    Article  Google Scholar 

  41. de Menezes EW, Lima EC, Royer B, de Souza FE, dos Santos BD, Gregório JR, Costa TMH, Gushikem Y, Benvenutti EV (2012) J Colloid Interf Sci 378:10–20

    Article  Google Scholar 

  42. Arenas LT, Vaghetti JCP, Lima EC, Moro CC, Benvenutti EV, Costa TMH (2004) Mater Lett 58:895–898

    Article  Google Scholar 

  43. Benvenutti EV, Moro CC, Costa TMH, Gallas MR (2009) Quim Nova 32:1926–1933

    Article  Google Scholar 

  44. Pavan FA, Gobbi SA, Moro CC, Costa TMH, Benvenutti EV (2002) J Porous Mater 9:307–311

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to CNPq, CAPES, FAPERGS, and PROPESQ/UFRGS for financial support and grants. This work was also supported by PRONEX/CNPq/FAPERGS-04/0887-0 and 10/0050-6. The authors thank also the CME-UFRGS for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Gregório.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuscaldo, R.d.S., de Menezes, E.W., Lima, M.F.S. et al. Mesoporous organic–inorganic hybrid material containing hydrosilylated soybean oil. J Sol-Gel Sci Technol 78, 457–464 (2016). https://doi.org/10.1007/s10971-016-3957-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3957-8

Keywords

Navigation