Skip to main content
Log in

Large-scale preparation of morphology-controlled microporous silica particles via gradual injection of reactants with different surfactants

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Microporous silica particles that are monodispersed and have submicrometer diameters are attracting much attention in many applications, including medicine, environmental technology, cosmetics, and electronics. However, the production of microporous silica particles on an industrial scale comes with some difficulties. We have recently reported that the efficient synthesis of monodisperse and microporous silica particles can be achieved by the gradual injection of reactants into the reaction system. In the present study, we examined the effect of template molecules on the particle morphology via the gradual injection of reactants method. The use of the primary amines is mandatory to obtain the microporous silica particles. Furthermore, the solubility of amines in the reaction solution plays a critical role in the synthesis of monodispersed and microporous silica particles of 100 nm in diameter. Monodisperse silica particles 100 nm in diameter and with a specific surface area of 500 m2/g could be obtained with decylamine as a surfactant. The results indicate that the present synthetic approach is useful for efficient and large-scale production of monodisperse and microporous silica particles with the designated surface area.

Graphical Abstract

Microporous silica particles of 100 nm in diameter can be prepared in an industrial scale by the gradual injection of reagent approach. Good dispersibility of particle diameter and effective production can be achieved at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Adv Mater 16:1959–1966

    Article  Google Scholar 

  2. Lu J, Liong M, Zink JI, Tamanoi F (2007) Small 3(8):1341–1346

    Article  Google Scholar 

  3. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) ACS Nano 2(5):889–896

    Article  Google Scholar 

  4. Lu F, Wu S-H, Hung Y, Mou C-Y (2009) Small 5(12):1408–1413

    Article  Google Scholar 

  5. Du X, He J (2011) Nanoscale 3:3984–4002

    Article  Google Scholar 

  6. Urata C, Yamada H, Wakabayashi R, Aoyama Y, Hirosawa S, Arai S, Takeoka S, Yamauchi Y, Kuroda K (2011) J Am Chem Soc 133:8102–8105

    Article  Google Scholar 

  7. Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K (2012) Chem Mater 24:1462–1471

    Article  Google Scholar 

  8. Lin Y-S, Hurley KR, Haynes CL (2012) J Phys Chem Lett 3:364–374

    Article  Google Scholar 

  9. Yang P, Gaib S, Lin J (2012) Chem Soc Rev 41:3679–3698

    Article  Google Scholar 

  10. Kwon S, Singh RK, Perez RA, Neel EAA, Kim H-W, Chrzanowski W (2013) J Tissue Eng 4:1–18

    Article  Google Scholar 

  11. Prevo BG, Hwang Y, Velev OD (2005) Chem Mater 17:3642–3651

    Article  Google Scholar 

  12. Kobler J, Bein T (2008) ACS Nano 11:2324–2330

    Article  Google Scholar 

  13. Hoshikawa Y, Yabe H, Nomura A, Yamaki T, Shimojima A, Okubo T (2010) Chem Mater 22:12–14

    Article  Google Scholar 

  14. Katagiri K, Yamazaki S, Inumaru K, Koumoto K (2015) Polym J 47:190–194

    Article  Google Scholar 

  15. Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE (2002) Chem Mater 12:4721–4728

    Article  Google Scholar 

  16. Ikari K, Suzuki K, Imai H (2004) Langmuir 20:11504–11508

    Article  Google Scholar 

  17. Suzuki K, Ikari K, Imai H (2004) J Am Chem Soc 126:462–463

    Article  Google Scholar 

  18. Ikari K, Suzuki K, Imai H (2006) Langmuir 22:802–806

    Article  Google Scholar 

  19. Yano K, Suzuki N, Akimoto Y, Fukushima Y (2002) Bull Chem Soc Jpn 75:1977–1982

    Article  Google Scholar 

  20. Yano K, Fukushima Y (2003) J Mater Chem 13:2577–2581

    Article  Google Scholar 

  21. Yano K, Fukushima Y (2004) J Mater Chem 14:1579–1584

    Article  Google Scholar 

  22. Yamada Y, Yano K (2006) Micro Meso Mater 93:190–198

    Article  Google Scholar 

  23. Mizutani M, Yamada Y, Nakamura T, Yano K (2008) Chem Mater 20:4777–4782

    Article  Google Scholar 

  24. Yano K, Katz MB, Pan X, Tatsuda N (2014) J Colloid Interface Sci 418:61–65

    Article  Google Scholar 

  25. Urata C, Aoyama Y, Tonegawa A, Yamauchi Y, Kuroda K (2009) Chem Commun 34:5094–5096

    Article  Google Scholar 

  26. Yamada H, Urata C, Ujiie H, Yamauchi Y, Kuroda K (2013) Nanoscale 5:6145–6153

    Article  Google Scholar 

  27. Kuroda K, Shimojima A, Kawahara K, Watabayashi R, Yamura Y, Asakura Y, Kitahara M (2014) Chem Mater 26:211–220

    Article  Google Scholar 

  28. Möller K, Kobler J, Bein T (2007) Adv Funct Mater 17:605–612

    Article  Google Scholar 

  29. Qiao Z-A, Zhang L, Guo M, Liu Y, Huo Q (2009) Chem Mater 21:3823–3829

    Article  Google Scholar 

  30. Zhang K, Xu LL, Jiang JG, Calin N, Lam KF, Zhang SJ, Wu HH, Wu GD, Albela B, Bonneviot L, Wu P (2013) J Am Chem Soc 135:2427–2430

    Article  Google Scholar 

  31. Wu S-H, Mou C-Y, Lin H-P (2013) Chem Soc Rev 42(9):3862–3875

    Article  Google Scholar 

  32. Shimogaki T, Tokoro H, Tabuchi M, Koike N, Yamashina Y, Takahashi M (2015) J Sol-Gel Sci Technol 74:109–113

    Article  Google Scholar 

  33. Stöber W, Fink A (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  34. Shimogaki T, Tokoro H, Tabuchi M, Koike N, Yamashina Y, Takahashi M (2015) J Sol–Gel Sci Technol 76:156–163

    Article  Google Scholar 

  35. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahide Takahashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimogaki, T., Tokoro, H., Tabuchi, M. et al. Large-scale preparation of morphology-controlled microporous silica particles via gradual injection of reactants with different surfactants. J Sol-Gel Sci Technol 79, 440–446 (2016). https://doi.org/10.1007/s10971-015-3942-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3942-7

Keywords

Navigation