Skip to main content
Log in

Estimation of radiological dose due to radon, thoron and their progeny in indoor atmosphere of Shivamogga district, Karnataka, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study reports the 222Rn, 220Rn, and their progeny concentration in Shivamogga district by using SSNTD’s based pin hole dosimeters and deposition-based progeny sensor. The average indoor 222Rn and 220Rn concentration varies from 8.14 to 146 Bq m−3 and 13.01 to 157 Bq m−3 with a mean value of 60.61 and 61.77 Bq m−3. The EEC for 222Rn and 220Rn ranges from 1.55 to 19 Bq m−3 and 0.44 to 6 Bq m−3 with a mean value of 7.29 and 2.66 Bq m−3. The annual average equilibrium factor for 222Rn is well within the global mean values of 0.4, while the thoron is bit higher than specified global mean values of 0.02. The annual effective dose varies from 0.31 to 2.5 mSvy−1 with a mean value of 1.1 mSvy−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. US Environmental Protection Agency (2012a) An introduction to indoor air quality. Washington, DC

  2. The World Health Organization (2005) Fact Sheet No.291: radon and cancer. Available at http://www.who.int/mediacentre/factsheets/fs291/en/index.html

  3. The World Health Organization (2009) WHO Handbook on Indoor radon. ISBN 978-92-4-154767-3. Available at: http://whqlibdoc.who.int/publications/2009/9789241547673_eng.pdf.

  4. UNSCEAR United Nation Scientific Committee on the Effect of Atomic Radiation (2000). Annex B: exposures from natural radiation sources. United Nations, p 104

  5. ICRP (International Commission on Radiological Protection) (2011) Lung cancer risk from radon and progeny and statement on radon. ICRP Publication-115 Pergamon Press

  6. Sannappa J, Chandrashekara MS, Sathish LA, Paramesh L, Ventakaramaiah P (2003) Study of background radiations dose in Mysore city, Karnataka state, India. Radiat Meas 37:55–65

    Article  CAS  Google Scholar 

  7. Raashou NO, Andersen CE, Andersen HP, Gravesen P, Lind M, Schuz J, Ulbak K (2008) Domestic radon and childhood cancer in Denmark. Epidemiology 19:536–543

    Google Scholar 

  8. Tufail M, Rashid T, Mahmood AB, Ahmad N (1994) Radiation doses in Pakistani houses. Sci Total Environ 142:171–177

    Article  CAS  PubMed  Google Scholar 

  9. Zubair M, Shakir KM, Verma D (2011) Assessment of indoor radon, thoron and their decay products in the surrounding areas of Firozabad, Uttar Pradesh, India. Arch Appl Sci Res 3:77–82

    CAS  Google Scholar 

  10. Avinash PR, Rajesh S, Kerur BR, Rosaline M (2014) Radon, thoron and their progeny concentration variations in dwellings of Gogi region, Yadgir district of Karnataka, India. J Radioanal Nucl Chem 302:1321–1326

    Article  CAS  Google Scholar 

  11. Rangaswamy DR, Srinivasa E, Srilatha MC, Sannappa J (2016) Measurement of radon concentration in drinking water of Shimoga district, Karnataka, India. J Radioanal Nucl Chem 307:907–916

    Article  CAS  Google Scholar 

  12. Ramola RC, Mukesh P, Tushar K, Preeti P, Peter B, Rosaline M, Tokonami S (2016) Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci Rep 6:31061. https://doi.org/10.1038/srep31061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suresh S, Rangaswamy DR, Sannappa J, Srinivasa E (2020) Assessment of radiological dose from exposure to attached and unattached fractions of radon (222Rn) and thoron (220Rn) in indoor atmosphere. J Radioanal Nucl Chem 326:173–184

    Article  CAS  Google Scholar 

  14. Sahoo BK, Sapra BK, Kanse SD, Gaware JJ, Mayya YS (2013) A new pin hole discriminated 222Rn/220Rn passive measurement device with single entry face. Radiat Meas 58:52–60

    Article  CAS  Google Scholar 

  15. Praminder S, Komal S, Mishra R, Sahoo BK, Bajwa BS (2016) Attached, unattached fraction of progeny concentrations and equilibrium factor for dose assessments from 222Rn and 220Rn. Radiat Environ Biophys 55:401–410

    Article  Google Scholar 

  16. Bangotra P, Mishra R, Kaur K, Kanse S, Mehra R, Sahoo BK (2015) Estimation of EEC, unattached fractions, and equilibrium factor for the assessment of radiological dose using pin-hole cup dosimeters and deposition-based progeny sensors. J Environ Radioact 148:67–73

    Article  CAS  PubMed  Google Scholar 

  17. Mishra R, Mayya YS (2008) Study of a deposition-based direct thoron progeny sensor (DTPS) technique for estimating equilibrium equivalent thoron concentration (EETC) in indoor environment. Radiat Meas 43:1408–1416

    Article  CAS  Google Scholar 

  18. Mishra R, Mayya YS, Kushwaha HS (2009) Measurement of 220Rn/222Rn progeny deposition velocities on surfaces and their comparison with theoretical models. J Aerosol Sci 40:1–15

    Article  CAS  Google Scholar 

  19. UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation) (2008) Sources and effects of ionizing radiation. United Nations

  20. Mehra R, Pankaj B (2013) Effect of ventilation conditions on the annual effective dose due to indoor radon concentration. Adv Appl Sci Res 4:212–215

    CAS  Google Scholar 

  21. Rohmingliana PC, Vanchhawng L, Thapa RK, Sahoo BK, Mishra R, Zoliana B, Mayya YS (2010) Measurement of indoor concentrations of radon and thoron in Mizoram, India. Sci Vis 10:148–152

    Google Scholar 

  22. Bajwa BS, Singh P, Singh P, Saini K, Singh S, Sahoo BK, Sapra BK (2016) A follow-up study on indoor 222Rn, 220Rn and their decay product concentrations in a mineralized zone of Himachal Pradesh India. Radiat Prot Dosim 168(4):553–560

    Article  CAS  Google Scholar 

  23. Mukesh P, Mukesh R, Anoop D, Ganesh P, Rosaline M, Ramola RC (2016) Study of radiation exposure due to radon, thoron and pogeny in the indoor environment of Yamuna and Tons Valleys of Garhwal Himalaya. Radiat Prot Dosim 171:187–191

    Article  Google Scholar 

  24. Kumar A, Chauhan RP (2014) Measurement of indoor radon-thoron concentration and radon soil gas in some North Indian dwellings. J Geochem Explor 143:155–162

    Article  CAS  Google Scholar 

  25. Veena J, Sanjay D, Manjulata Y, Rosaline M, Ramola RC (2016) Measurement of radon, thoron and their progeny concentrations in the dwellings of Pauri Garhwal, Uttarakhand, India. Radiat Prot Dosim 171:234–237

    Article  Google Scholar 

  26. Ramola RC, Rautela BS, Gusain GS, Ganesh P, Sahoo SK, Tokonami S (2013) Measurements of radon and thoron concentrations in high radiation background area using pin-hole dosimeter. Radiat Meas 53–54:71–73

    Article  Google Scholar 

  27. Prabhjot S, Parminder S, Surinder S, Sahoo BK, Sapra BK, Bajwa BS (2015) A study of indoor radon, thoron and their progeny measurement in Tosham region Haryana, India. J Radiat Res Appl Sci 8:226–233

    Google Scholar 

  28. Rohit M, Rajan J, Mittal HM (2015) Assessment of lung dose from indoor 222Rn and 220Rn exposure in the Jalandhar and Kapurthala districts of Punjab, India. Indoor Built Environ 26:1305–1310

    Google Scholar 

  29. Tushar K, Sunita A, Mukesh P, Preeti P, Bourai AA, Ramola RC (2016) Study of radiation exposure due to radon, thoron and their progeny in the indoor environment of Rajpur region of Uttarakhand Himalaya. Radiat Prot Dosim 171:204–207

    Article  Google Scholar 

  30. Sannappa J, Ningappa C (2014) Indoor concentration of radon, thoron and their progeny around granite regions in the state of Karnataka, India. Radiat Prot Dosim 158:406–411

    Article  CAS  Google Scholar 

  31. Subbaramu MC, Muruleedharan TS, Ramachandran TV, Shaikh AN (1988) Methods and measurements of indoor levels of 222Rn and its daughters. BARC Rep, p 1390

  32. Ramola RC (2011) Survey of radon and thoron in homes of Indian Himalaya. Radiat Prot Dosim 146:11–13

    Article  CAS  Google Scholar 

  33. Ramola RC, Kandari MS, Rawat RBS, Ramchandran TV, Choubey VMA (1998) Study of seasonal variations of radon levels in different types of houses. J Environ Radioact 39:1–7

    Article  CAS  Google Scholar 

  34. Mukesh P, Mukesh R, Anoop D, Manjulata Y, Gusain GS, Rosaline M, Ramola RC (2015) Measurements of radon and thoron progeny concentrations in dwellings of Tehri Garhwal, India using LR-115 deposition based DTPS/DRPS technique. Radiat Prot Dosim 167:102–106

    Article  Google Scholar 

  35. Eappen KP, Mayya YS (2004) Calibration factors for LR-115 (type-II) based radon thoron discriminating dosimeter. Radiat Meas 38:5–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Rangaswamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangaswamy, D.R., Suresh, S., Srinivasa, E. et al. Estimation of radiological dose due to radon, thoron and their progeny in indoor atmosphere of Shivamogga district, Karnataka, India. J Radioanal Nucl Chem 332, 2379–2388 (2023). https://doi.org/10.1007/s10967-023-08833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08833-4

Keywords

Navigation