Skip to main content
Log in

Technetium stabilization in Portland cement and bentonite clay barriers by thiourea

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper we elaborated the prospective approach for the immobilization of technetium in bentonite clay and Portland cement. It includes thiourea (Tu) addition for Tc effective speciation modification from mobile Tc(VII) to immobile Tc species. Based on the resulting compound structure analysis of Tu with technetium, the reductive mechanism of immobilization was proved. A new technetium complex structure with Tu was described by single crystal XRD analysis, where technetium was obtained in the oxidation state + 3. The complex is stable due to the coordination binding of Tc to the sulfur atoms of the Tu molecules and to the chlorine atom, effective charge transfer along the S–Tc bond, and intramolecular hydrogen bonds. XANES spectra characteristics of technetium (VII, IV, III) reference compounds and samples containing Tc–Tu species in a cement matrix and bentonite clay indicates the presence of technetium in bentonite clay in the form of its tetravalent oxidation state during the Fourier transformation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Melentev AB, Mashkin AN, German KE (2016). Theor Found Chem Eng. https://doi.org/10.1134/S0040579516040205

    Article  Google Scholar 

  2. Laverov NP, Yudintsev SV, Omel’yanenko BI (2009). Geol Ore Depos. https://doi.org/10.1134/S1075701509040011

    Article  Google Scholar 

  3. Westsik Jr JH, Cantrell KJ, Serne RJ, Qafoku N (2014) Pacific Northwest National Laboratory Richland, Washington, USA: Pacific Northwest National Laboratory Richland. https://doi.org/10.2172/1130666

  4. Isaacs M, Lange S, Deissmann G, Bosbach D, Milodowski AE, Read D (2020). Appl Geochem. https://doi.org/10.1016/j.apgeochem.2020.104580

    Article  Google Scholar 

  5. Eriksen TE, Ndalamba P, Cui D, Bruno J, Caceci M, Spahiu K (1993) SKB Technical Report, TR-93–18. https://www.skb.se/publikation/9249/TR93-18webb.pdf

  6. Warwick P, Aldridge P, Evans N, Vines S (2007). Radiochim Acta. https://doi.org/10.1524/ract.2007.95.12.709

    Article  Google Scholar 

  7. Makarov A, Safonov A, Sitanskaia A, Martynov K, Zakharova E, Kulyukhin S (2022) Clay and carbon materials-based engineered barriers for technetium immobilization. Prog Nucl Energy. https://doi.org/10.1016/j.pnucene.2022.104398

    Article  Google Scholar 

  8. Makarov AV, Safonov AV, Konevnik YV, Teterin YA, Maslakov KI, Teterin AY, Karaseva YY, German KE, Zakharova EV (2021) Activated carbon additives for technetium immobilization in bentonite-based engineered barriers for radioactive waste repositories. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123436

    Article  PubMed  Google Scholar 

  9. Bruggeman C, et al. (2002) The quantification of the interaction of technetium-99 with dissolved boom clay organic matter

  10. Yuji A, Powell BA, Kaplan DI (2018). J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2017.08.049

    Article  Google Scholar 

  11. Brodda BG (1988). Sci Total Environ. https://doi.org/10.1016/0048-9697(88)90350-6

    Article  Google Scholar 

  12. Kaplan DI, Lilley M, Almond P, Powell BA (2011). SRS. https://doi.org/10.2172/1012465

    Article  Google Scholar 

  13. Um W, Jung HB, Wang G, Westsik JH, Peterson RA (2013) USA: Pacific Northwest National Laboratory Richland. https://doi.org/10.2172/1110479

  14. Lukens WW, Bucher JJ, Shuh DK, Edelstein NM (2005). Environ Sci Technol. https://doi.org/10.1021/cm0622001

    Article  PubMed  Google Scholar 

  15. Um W, Valenta MM, Chung CW, Yang J, Engelhard MH, Serne RJ, Parker KE, Wang G, Cantrell KJ, Westsik JH (2011) USA: Pacific Northwest National Laboratory Richland. https://doi.org/10.2172/1027193

  16. German KE, Obruchnikova YA, Safonov AV, Tregubova VE, Afanas’ev AV, Kopytin AV, Kryzhovets OS, Poineau F, Abkhalimov EV, Shiryaev AA (2016) Kinetics of the formation of precipitates and the physicochemical properties of technetium-99 and rhenium sulfides according to small-angle x-ray scattering and ultramicrocentrifugation data. Russian J Inorg Chem. https://doi.org/10.1134/S0036023616110061

    Article  Google Scholar 

  17. German KE, Shiryaev AA, Safonov AV, Obruchnikova YA, Ilin VA, Tregubova VE (2015) Technetium sulfide–formation kinetics, structure and particle speciation. Radiochim Acta. https://doi.org/10.1515/ract-2014-2369

    Article  Google Scholar 

  18. Cantrell KJ, Williams BD (2013). J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2013.02.049

    Article  Google Scholar 

  19. Liu Y (2008). Radiochim Acta. https://doi.org/10.1524/ract.2008.1528

    Article  Google Scholar 

  20. Mattigo SV, Lindberg MJ, Westsik JH, Parker KE, Chung CW (2011) USA: Pacific Northwest National Laboratory Richland. https://doi.org/10.2172/1027185

  21. Spence RD, Shi C (2019). CRC. https://doi.org/10.1201/9781420032789

    Article  Google Scholar 

  22. Qafoku NP, Serne RJ, Neeway JJ, Westsik JH, Lawter AR, Valenta Snyder MM, Levitskaia TG (2015) USA: Pacific Northwest National Laboratory Richland. https://doi.org/10.1557/opl.2015.310

  23. Pearce CI et al (2020) Technetium immobilization by materials through sorption and redox-driven processes: a literature review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2019.06.195

    Article  PubMed  Google Scholar 

  24. Abrams MJ, Davison A, Faggiani R, Jones AG, Lock CJL (1984). Inorg Chem. https://doi.org/10.1021/ic00189a003

    Article  Google Scholar 

  25. Kopunec R (1979). J Radioanal Nucl Chem. https://doi.org/10.1007/bf02520511

    Article  Google Scholar 

  26. Kamorny DA, Safonov AV, Boldyrev KA, Abramova ES, Tyupina EA, Gorbunova OA (2021). J Nucl Mater. https://doi.org/10.1016/j.jnucmat.2021.153295

    Article  Google Scholar 

  27. Makarov A, Safonov A, Sitanskaia A, Martynov K, Zakharova E, Kulyukhin S (2022). Prog Nucl Energy. https://doi.org/10.1016/j.pnucene.2022.104398

    Article  Google Scholar 

  28. Teterin YA, Makarov AV, Safonov A, Zakharova EV, Maslakov KI, Teterin AY (2021). Inorg Mater. https://doi.org/10.1134/S0020168521090144

    Article  Google Scholar 

  29. Long Time Leach Testing of Solidified Radioactive Waste Forms; Gosstandart of Russia. Moscow, Russia. (2003) 1–8

  30. Krupskaya V, Novikova L, Tyupina E, Belousov P, Dorzhieva O, Zakusin S, Kim K, Roessner F, Badetti E, Brunelli A, Belchinskaya L (2019). Appl Clay Sci. https://doi.org/10.1016/j.clay.2019.02.001

    Article  Google Scholar 

  31. Meleshyn AY, Zakusin SV, Krupskaya VV (2021). Minerals. https://doi.org/10.3390/min11070742

    Article  Google Scholar 

  32. Sheldrick GM (2008) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA

    Google Scholar 

  33. Bruker (2013) SAINT, v. 8.29A, Bruker AXS Inc., Madison, WI

  34. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009). J Appl Cryst. https://doi.org/10.1107/S0021889808042726

    Article  Google Scholar 

  35. Sheldrick GM (2015). Acta Cryst. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  36. Sheldrick GM (2018) SHELXL-2018. Universität Göttingen, Göttingen (Germany)

    Google Scholar 

  37. Chernyshov AA, Veligzhanin AA, Zubavichus YV (2009). Nucl Inst Meth Phys Res A. https://doi.org/10.1016/j.nima.2008.12.167

    Article  Google Scholar 

  38. Ravel B, Newville M (2005). J Synchrotron Radiat. https://doi.org/10.1107/S0909049505012719

    Article  PubMed  Google Scholar 

  39. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998). Phys Rev B. https://doi.org/10.1103/PhysRevB.58.7565

    Article  Google Scholar 

  40. Wang Q, German KE, Oganov AR, Dong H, Feya O, Zubavichus YV, Murzin V (2016). RSC Adv. https://doi.org/10.1039/C5RA24656C

    Article  PubMed  Google Scholar 

  41. Serne RJ, Martin WJ, LeGore VL (1995) PNL-10745 Washington, USA: Pacific Northwest Laboratory Richland. https://doi.org/10.2172/108093

  42. Rochon FD, Melanson R, Kong PC (1996). Polyhedron. https://doi.org/10.1016/0277-5387(95)00534-X

    Article  Google Scholar 

  43. Baldas J, Colmanet SF, Ivanov Z, Williams GA (1994). J Chem Soc Chem Commun. https://doi.org/10.1039/C39940002153

    Article  Google Scholar 

  44. Rochon FD, Melanson R, Kong PC (1992). Inorg Chim Acta. https://doi.org/10.1016/S0020-1693(00)85821-1

    Article  Google Scholar 

  45. Huy NH, Abram U (2007). Inorg Chem. https://doi.org/10.1021/ic070323x

    Article  Google Scholar 

  46. Rochon FD, Melanson R, Kong PC (1990). Acta Crystallogr C. https://doi.org/10.1107/S0108270189008310

    Article  Google Scholar 

  47. Meyer RE, Arnold WD, Case FI (1986). Tech Rep. https://doi.org/10.2172/5954679

    Article  Google Scholar 

  48. Rard JA, Rand MH, Anderegg G, Wanner H (1999) Chemical thermodynamics 3: chemical thermodynamics of technetium. Eds. Sandio MCA, Östhols E. OECD NEA, Data Bank. ELSEVIER. 118. https://www.oecd-nea.org/dbtdb/pubs/vol3-technetium.pdf

  49. Morpurgo L (1968). Inorg Chim Acta. https://doi.org/10.1016/s0020-1693(00)87018-8

    Article  Google Scholar 

  50. Rard JA (2005). J Nucl Radiochem Sci. https://doi.org/10.14494/jnrs2000.6.3_197

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M.S. Grigoriev for invaluable help in analyzing the single crystal data of the Tc-Tu complex. X-ray diffraction experiments were performed at the Center for Shared Use of Physical Methods of Investigation at the Frumkin Institute of Physical Chemistry and Electrochemistry, RAS.

Funding

This work was supported by state assignments from The Ministry of Science and Higher Education of the Russian Federation (#AAAA-A16-11611091001) and performed using the equipment of the Core Facilities Center of IPCE RAS (CKP FMI IPCE RAS). The study was supported by the Ministry of Science and Higher Education of the Russian Federation (program no. 122011300061-3).

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization, Investigation, Validation, writing—Original Draft, Supervision, AN: Writing—Original Draft, Investigation, MV: Investigation, Validation, AS: Investigation, Validation, KG: Conceptualization, Methodology, Supervision.

Corresponding author

Correspondence to Alexey Safonov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Human or animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonov, A., Novikov, A., Volkov, M. et al. Technetium stabilization in Portland cement and bentonite clay barriers by thiourea. J Radioanal Nucl Chem 332, 2195–2204 (2023). https://doi.org/10.1007/s10967-023-08830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08830-7

Keywords

Navigation