Skip to main content
Log in

Production of 177Lu by hafnium irradiation using 55-MeV bremsstrahlung photons

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The possibility of production a medical radionuclide 177Lu by irradiating natHfO2 by bremsstrahlung photons up to 55 MeV was investigated. The yields of the main nuclear reactions were measured. A procedure for one-step separation of carrier free 177Lu via extraction chromatography on the LN resin sorbent (Triskem) was developed. The radiochemical yield was 98%, separation factor was higher than 105. Isomeric ratio 177mLu/177Lu was estimated. Simulation of 177Lu production in photonuclear reactions on 178Hf, 179Hf and natHf nuclei was performed. The possibility of production of medical quantities was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dash A, Pillai MRA, Knapp FF (2015) Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging 49:85–107. https://doi.org/10.1007/s13139-014-0315-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rahbar K, Ahmadzadehfar H, Kratochwil C et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90. https://doi.org/10.2967/jnumed.116.183194

    Article  CAS  PubMed  Google Scholar 

  3. Mirzadeh S, Mausner LF, Garland MA (2011) Reactor-produced medical radionuclides. In: Vértes A, Nagy S, Klencsár Z, Lovas RG, Rösch F (eds) Handbook of nuclear chemistry. Springer, US, Boston, pp 1857–1902

    Chapter  Google Scholar 

  4. Van So L, Morcos N, Zaw M et al (2008) Alternative chromatographic processes for no-carrier added 177Lu radioisotope separation Part I. Multi-column chromatographic process for clinically applicable. J Radioanal Nucl Chem 277:663–673. https://doi.org/10.1007/s10967-007-7130-2

    Article  CAS  Google Scholar 

  5. Park UJ, Lee JS, Choi KH et al (2016) Lu-177 preparation for radiotherapy application. Appl Radiat Isot 115:8–12. https://doi.org/10.1016/j.apradiso.2016.05.028

    Article  CAS  PubMed  Google Scholar 

  6. Horwitz EP, McAlister DR, Bond AH et al (2005) A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl Radiat Isot 63:23–36. https://doi.org/10.1016/j.apradiso.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  7. Boldyrev PP, Kurochkin AV, Proshin MA et al (2016) A modified electrochemical procedure for isolating 177Lu radionuclide. Radiochemistry 58:498–505. https://doi.org/10.1134/S106636221605009X

    Article  CAS  Google Scholar 

  8. Manenti S, Groppi F, Gandini A et al (2011) Excitation function for deuteron induced nuclear reactions on natural ytterbium for production of high specific activity 177gLu in no-carrier-added form for metabolic radiotherapy. Appl Radiat Isot 69:37–45. https://doi.org/10.1016/j.apradiso.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  9. Hermanne A, Takacs S, Goldberg MB et al (2006) Deuteron-induced reactions on Yb: measured cross sections and rationale for production pathways of carrier-free, medically relevant radionuclides. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 247:223–231. https://doi.org/10.1016/j.nimb.2006.03.008

    Article  CAS  Google Scholar 

  10. Király B, Tárkányi F, Takács S et al (2008) Excitation functions of alpha-particle induced nuclear reactions on natural ytterbium. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 266:3919–3926. https://doi.org/10.1016/j.nimb.2008.07.002

    Article  CAS  Google Scholar 

  11. Shahid M, Kim K, Naik H, Kim G (2014) Measurement of cross-sections for produced radionuclide in proton induced reactions on natHf up to 45 MeV. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 322:13–22. https://doi.org/10.1016/j.nimb.2013.12.029

    Article  CAS  Google Scholar 

  12. Siiskonen T, Huikari J, Haavisto T et al (2009) Excitation functions for proton-induced reactions on natural hafnium: production of 177Lu for medical use. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 267:3500–3504. https://doi.org/10.1016/j.nimb.2009.08.016

    Article  CAS  Google Scholar 

  13. Habs D, Köster U (2011) Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance. Appl Phys B Lasers Opt 103:501–519. https://doi.org/10.1007/s00340-010-4278-1

    Article  CAS  Google Scholar 

  14. Szpunar B, Rangacharyulu C, Daté S, Ejiri H (2013) Estimate of production of medical isotopes by photo-neutron reaction at the Canadian light source. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 729:41–50. https://doi.org/10.1016/j.nima.2013.06.106

    Article  CAS  Google Scholar 

  15. Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 85:39–44. https://doi.org/10.1016/j.apradiso.2013.11.122

    Article  CAS  PubMed  Google Scholar 

  16. Aliev RA, Aleshin GS, Belyshev SS et al (2017) Photonuclear production of carrier-free radionuclides: 69mZn. Russ Chem Bull 66:373–375. https://doi.org/10.1007/s11172-017-1743-6

    Article  CAS  Google Scholar 

  17. Danagulyan AS, Hovhannisyan GH, Bakhshiyan TM et al (2015) Formation of medical radioisotopes 111In, 117mSn, 124Sb, and 177Lu in photonuclear reactions. Phys At Nucl 78:483–488. https://doi.org/10.1134/S1063778815030035

    Article  CAS  Google Scholar 

  18. Ermakov AN, Ishkhanov BS, Kamanin AN et al (2018) A multipurpose pulse race-track microtron with an energy of 55 MeV. Instrum Exp Tech 61:173–191. https://doi.org/10.1134/S0020441218020136

    Article  Google Scholar 

  19. Agostinelli S, Allison J, Amako K et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  20. (2018) Evaluated nuclear structure data file search and retrieval. http://www.nndc.bnl.gov/ensdf Accessed 22 June 2018

  21. Koning AJ, Duijvestijn MC, Hilarie S (2007) Talys 1.0. In: International conference on nuclear data for science and technology. Nice, France, pp 211–214

  22. Ishkhanov BS, Orlin VN (2015) Modified version of the combined model of photonucleon reactions. Phys At Nucl 78:557–573. https://doi.org/10.1134/S1063778815040067

    Article  CAS  Google Scholar 

  23. Ishkhanov BS, Orlin VN (2007) Semimicroscopic description of the giant dipole resonance. Phys Part Nucl 38:232–254. https://doi.org/10.1134/S1063779607020049

    Article  CAS  Google Scholar 

  24. Varlamov VV, Davydov AI, Makarov MA et al (2016) Reliability of the data on the cross sections of the partial photoneutron reaction for 63,65Cu and 80Se nuclei. Bull Russ Acad Sci Phys 80:317–324. https://doi.org/10.3103/S1062873816030333

    Article  CAS  Google Scholar 

  25. Horwitz EP, Bloomquist CAA (1975) Chemical separations for super-heavy element searches in irradiated uranium targets. J Inorg Nucl Chem 37:425–434. https://doi.org/10.1016/0022-1902(75)80350-2

    Article  CAS  Google Scholar 

  26. Bast R, Scherer EE, Sprung P et al (2015) A rapid and efficient ion-exchange chromatography for Lu–Hf, Sm–Nd, and Rb–Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS. J Anal At Spectrom 30:2323–2333. https://doi.org/10.1039/C5JA00283D

    Article  CAS  Google Scholar 

  27. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40:586–593. https://doi.org/10.1021/ac60259a007

    Article  CAS  Google Scholar 

  28. Gilmore G (2008) Practical gamma-ray spectrometry, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  29. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  30. Metropolis N, Rosenbluth AW, Rosenbluth MN et al (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092. https://doi.org/10.1063/1.1699114

    Article  CAS  Google Scholar 

  31. Ermakov AN, Ishkhanov BS, Kamanin AN, et al Design of a linear accelerator with a magnetic mirror on the beam energy of 45 MeV. In: 24th Russian particle accelerator conference. Obninsk, Russia, pp 251–253

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey G. Kazakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, A.G., Belyshev, S.S., Ekatova, T.Y. et al. Production of 177Lu by hafnium irradiation using 55-MeV bremsstrahlung photons. J Radioanal Nucl Chem 317, 1469–1476 (2018). https://doi.org/10.1007/s10967-018-6036-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-6036-5

Keywords

Navigation